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0: Structure, Notation, and Classification

Reference for this section is (pg.701, [5])

Structure of Differential Operators:

Real, n-dimensional Euclidean space, denoted E™ or R™ (in coordinate form), has wvector space
structure, metric-topological structure, inner product stucture (hence norm structure), and the tra-
ditional structure of an algebra.

It is complete with respect to its metric, so the partial operators are well defined, provided
we feed them at least locally continuous functions. Recall:

81‘1.‘ = ].im f(xla ceey Lg _+_ h, ceey wn) - f(ml, soeg Ly eesy .’,Cn) '
h—0 h
We may compose partial operators, yielding higher order derivative operators:

o ,__ Qo o
D® := 90" o...o0,",

n
where a := (@, ..., @) is an multi-index of size |a| := > a;.
=1

Notes: These operators require more of our function inputs of course (they must be |«| times
differentiable); The only size 1 operators are just the individual partials; Each D® is a linear
operator, since each 0; is.

In contrast to this last note, we have another binary operation defined on the D%’s that yields
non-linearity. Namely, the tensor product. Let us define:

D> ® D?(f,g) :== D*(f) - D"(g),
for appropriately differentiable functions f, g. As a special case, we may consider the situation with
a=pFand f =g:
(D*(£))? := D* ® D*(f, f)
This generalizes of course to k-fold tensor products, (D(f))*.

These may also be combined via linear combinations to give polynomials and power series
in each of the D atoms. Lastly, the coefficients in such linear combinations can be given spa-
tial dependence, lower order derivative operator dependence, and/or function argument
dependence. For example, one such term could look like:

Az, {DP(f) : 1B < |al}, f) - D*(f)
or equivalently:
A(z, DII(f), ... D(S), f) - D*(£),
provided we define the sets:

D" := {D" : |8| = k}.

(Next Page)
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Section 0

On Shorthand Notation:

e Def: In the special cases where k = 1 and k = 2, the sets D! and D? can be displayed nicely in
a vector (resp. matrix). These displays are given aliases and special symbols. Namely:

V (the gradient vector) and V? (the Hessian matrix). These two are used very frequently. So
for clarity:

v = (8", ...,8D)

o ... o)
\& ::( : : )
o8 . o

Note: In general, we may summarize the sets, D¥, in multi-dimensional arrays.

and

e Def: Some other common notation involves what is called the Laplacian operator, which is just:

n

e Def: (p.66 [5]) The d’ Alembertian operator is a short hand for the wave equation operator:

D::E),ftz)—A

[Exercise: Create your own symbol and slap your name on it!]

(Next page)
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Section 0

On Classification:

We've already encountered ways to distinguish differential operators. We have the order of the
operator determined by the highest value of k = |a| for multi-index a appearing within the
expression. We also have linear, multi-linear, semi-linear, quasi-linear, and nonlinear (de-
pending on how the atoms D appear in the expression).

When we move to operator equations, we have a couple more things that we can say.

e Def: A partial differential equation is ultimately of the form:

F(w’% {8i}i€{1,...,n}) = f(x,u)

taken over some domain, U C R™ of an unknown function w : U — R.

We further describe operator equations as homogeneous if the RHS is zero. Otherwise, we say it
is non-homogeneous. [ don’t particularly like the homogeneous terminology because of its appear-
ance in the discussion of symmetric polynomials where the terms all have the same order. As well,
we can subtract the RHS over and create a new operator... Nevertheless we will use it.

Other classifications involve having constant coefficients, spatially dependent coefficients,
etc. As well, when the operator takes on special model equation forms that resemble equations for
quadric surfaces or conic sections, we give them classifications such as parabolic, elliptic,
hyperbolic etc. Some authors save these terms for relations involving the discriminant of a change
of variables etc. I would wait until you get there to worry about that.

e Def: (Uncoupled) Systems of partial differential equations have the form:

{Fj (az, w, {81}1) = fi(x, uj)}
J

where ¢ and 7, vary up to the m in R™. This is essentially a collection of PDEs whom must all

simultaneously be satisfied. The collection of functions w? may be taken to be the same function

over and over again. The systems are further classified as coupled if there exists an equation that

depends on more than one function variable w/. Think diagonal matrix vs. non-diagonal.

Lastly, initial or boundary data may be added to the problems. These usually serve to narrow
the solution sets after they have been found (for example when undetermined coefficients exist).
Cauchy, Dirichlet, and Neumann are names that specify the type of auxiliary data for the
problem. Again, better to consider these later.
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I: Solutions Catalog (a.k.a. The Maw)

This list was adapted from (pgs.3-6 [5]). Although each equation has homogeneous and nomn-
homogeneous counterparts, as well as auxiliary data (initial or boundary conditions), the main
focus is on finding solutions (not necessarily unique ones). These solutions are typically explicit,
given up to undetermined coefficients.
Handling non-homogeneity and auziliary data/constraints should be treated separately in
theory. At least for the Linear case, superposition may be applied to handle both problems.
Links to each article are given below. The template for each article is as follows:

e Fquation,

e Constraints,

e Solution (not nec. unique),

e Solution Technique, and a

e REALITY CHECK (direct solution verification,).

LINEAR EQUATIONS

1.) Transport

2.) Laplace

3.) Heat/Diffusion

4.) Wave (%)

5.) PLANAR WAVE SOLUTIONS - Collection of PDEs
> Satisfies: Heat, Wave, Klein-Gordon, Schrodinger, and Airy.

More: Helmholtz, Liouville, Holmogorov, Fokker-Planck, Telegraph, General Wave, and Beam Eq.

NONLINEAR EQUATIONS

6.) Conservation Laws
More: Eikonal, Poisson, p-Laplacian, Minimal Surface, Monge-Ampere, Inviscid Burger, Scalar Reaction-
Diffusion, Porous Medium, Wave, Korteweg-deVries, and Schrodinger Eq.

LINEAR SYSTEMS

7.) System from Stokes Theorem
More: Equilibrium Eq.’s of Linear Elasticity, Evolution Eq.’s of Linear Elasticity, and Maxwell’s Eq’s.

NONLINEAR SYSTEMS

System of Convervation Laws, Reaction-Diffusion System, Euler’s Eq.’s for Incrompressible Inviscid Flow,
and Navier-Stokes Eq.’s for Incompressible Viscious Flow.
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Section 1

la. (Homogeneous) Transport Equation (p.18-19 [5])

Domain and Unknown Function:

Uopen € R™ X (0,00)  and u:U—>R

Equation:

ug+b-Du=0 for (x,t) €U

Constraints:
u=g for (x,0) € U

where b € R™ is a fixed known direction, and g : QU — R is a fixed known function on the
boundary.

Solution:

u((z,t)) := g(z — tb).

Solution Technique:

Apply the theory and algorithm from Section II.1.1, this is done on the next page.

(Continues)
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Section 1

Solution Technique:
1.) We start by checking our problem is actually F.O.L. so that the M.o.C. applies.

n n+1
u+b-Du = Y bOu+1-0u—0 = > X\diu—Apiz O
=1 =1

Here we note that our problem is homogeneous (Apy2 = 0) and we call t <> T;41.

2.) Define the (n+2)-vector fields:
n:=< Vu,—1> and A:=<b,1,0 >

Then we note the problem factors into: (A, n) = 0. Continue.

3-5.) Before we move on, let us rename our usual curve parameter to s, so that we have yp(Ss)

instead to not confuse with the (n+1)th coordinate.
Let & € OU be arbitrary, then @ := (1, ..., n,t = 0) and p := (x, u(x)).

We write down the system then:
837;(3) =A', i€ {l,...,n+2}
’Yp(o) =P
7, 2(0) = g()

which instantiates to:

63'7;;(3) =b forie€ {1,..,n}
n+1 .
057, (s) =1
0s ;“"2(3) =0
Yp(0) = (Z1y evey Tpy 0, u(x))
75’”(0) = g(x) (boundary condition)
Integrating the first three lines w.r.t. the parameter, s, we get:
'y;’;(s) =b.s4+C" forie{l,..,n}
v, (s) = s+ C"
n—+2 _ n—+2
7, (s)=C

for introduced constants C* € R.

J<<] </ 0



Section 1

Solution Technique (Continued):

Applying the initial and boundary conditions, we solve for the new constants:
C'=x;, forie{l,..,n}

cC"tt =0
C"*? = g(x)

Combining these results, the integral curve through the arbitrary boundary point is:

'717(8) o (bls + @1, e, st 2y, 5, g(ac))

6a.) Projecting the curve to R™*! we have:
Yp(s) = (b's + x;, s).
Any o’ € Im(7,(s)), corresponds to an s’ € R. Opening this statement up gives:
/ / (=17 ~n+1/ 7
(@0 s Ty y) = (Fp(87)s s ¥y TH(87).
Which in our case is just:
’ ’ 1,/ ’ ’
(X950 Ty q) = (b's" 4+ @1,y .0y BS" + @y, §).

— (T1y 000y Tng1) = (— b8 + 2, ..., —b"s" + 2/, 0).

Note ¢’ =: x;,  , = s’ says nothing about @, which we know is zero by virtue of x € OU. But

it will be useful shortly.

6b.) Now if we take a step back, according to the theory, solutions along the projected curves look
like:
/ 2/ .7
u(z’) = v, (s") = g(z).

What we did in part (a) was eliminate the expression for the boundary point:
u(x') = g(( —b's' + i, .., =" + 2, 0))

Which is otherwise written: u((z’,t")) = g((z’ — bt’),0) =: g(z’ — bt’).A

J<</ I<] 10



Section 1

REALITY CHECK:

Let’s make sure the solution obtained actually satisfies the PDE!

u(z,t) = g(x — bt)

VS.

u+b-Du=20

We have by the chain rule:
Oyu = dy(g(z — bt)) = Y Big(x — bt) - (—b*)
=1

and "
O;u = 8;(g(x — bt)) = Z 9;g9(x — bt) - 6; = 0jg(x — bt).
i=1
Hence: "
b-Du=Du-b=>» 8g(z—bt)- (+b)
i=1

and the result is blatant. W

J<<] </ 11



Section 1

1b. (Non-Homogeneous) Transport Equation (p.19 [5])

Domain and Unknown Function:

Uopen € R™ X (0,00)  and u:U—>R

Equation:

ug+b-Du=f for (x,t) € U

Constraints:
u=g for (x,0) € U

where f : U — R is a fixed known function, b € R™ is a fixed known direction, and g : QU — R
is a fixed known function.

Solution:

u((x,t)) := g(x — tb) + /0 f(x+ (s —t)b, s)ds.

Solution Technique:

Apply the algorithm/theory from Section II.1. Next page.

(Continues)
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Section 1

Solution Technique:

1.) We know step (1) is satisfied from the previous problem (la).
2.) Call t =: ®,,41. Define the (n+2)-vector fields which are evaluated at points in @’ € U but
located at p’ = (x’, u(a’)) on the graph, I'u:

and  A(z')

=< V(u(z')), -1 >

n(w,) p’ pl P' ::< b? 17 f(w,) > pl

Then we note the problem factors into: (A, n) = 0. Continue.

3-5.) Take a boundary point p = (z, u(x)) € d(T'w). Then the integral curve, y,(s) : Sz C R — T'u,
through p is given by the solution to:

’.Y:,(S,) = Ai<m/ = ¥p(s")) for te{1,..,n+ 2}

Y(0) =p  (init.)
Y 2(0) = g(x)  (bdry)

Substitute and integrate:
'y;;(s') =bxs+C" for ie{l,..,n}
() =8+ O
) = [ £ ds + O
Applying the initial and boundary conditions gives:
x; = *7;(0) =b' % (0) + C* for <e{l,..,n}
0=+ (0) = (0) + O™

a(@) =720 = [ [ 1(())as’

And this says our integral curve is:

n+2
s’=0 + C

(') = (bi ws'tais oy [ FGEE)S +g(@) — [ [ £G())ds]

s’:O)

which can be cleaned up by combining the integrals into:

’

ols') = (bl’ oo, o g@)+ [ f(’NY(’w))dw>

w=0

J<</ I<] 13



Section 1

Solution Technique (Continued):

6.) The theory says then that our solution is of the form:

w=s’
u(@) =) = g(@) + [ FEw)du
w=0
So we just need to eliminate the boundary point @ and s” in favor of &’ = (2’,t’) € U. Accordingly,
x' = (XY Ty y) = Vp(s') = (b* * 8" + x4, 8")
gives us: '
x; = (z; — b's’,0) and ' =1z, , =5

Applying this yields:

u(@) = g((«, — bit', 0)) + /0 F((bw + [, — bt'], w)) duw

which when rearranging is:

u(@’) = g((a), — bt',0)) + / (& + (w — £)b, w) ) duw

Now we’ve rid reference to & as a boundary point so define ' =: (x,t), drop the primes, and call
w <> s (and identify bdry points with last component zero):

w((,8)) = g((a; — bit, 0)) +/0 F((@i + (s — )b, 5))ds

— u(z,t) = g(x — bt) —|—/0tf(ac—i— (s —t)b,s)ds . W

J<</ I<] 14
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REALITY CHECK:

Let’s make sure the solution obtained actually satisfies the PDE!

u(x,t) = g(x — bt) —|—/0 f(z+ (s —t)b,s)ds

VS.

us+b-Du=Ff

By the second Results Entry, we have:

t t
9, / F(s,t)ds = F(t,t) + / 8.f (s, t)ds.

where we take:
f(S,t) = f(CE + (3 - t)ba S)'

So that expanding with the chain rule in the second term, we get:

o, / F(@+ (s —t)b, s)ds = f(z + (t — t)b,t) + / [Z 0:f (@ + (s — t)b, ) - Dy’ + (s — t)b1) | ds
=1

Spatial derivatives pass through the integral as time is constant to them, so we don’t have to work
so hard. Coupling with linearity of the integral, we arrive at:

b-D{/Otf(:B—l—(s—t)b,s)ds} :/Ot [b-Df(x+ (s —t)b,s)|ds.  (+*)

Noting that g(x — bt) satisfies the homogeneous equation, the desired result follows:

us + b Du = (%) + (%x%x) = f(=z, ). [ |

J<<] </ 15
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2. (Homogeneous) Laplace Equation (p.20-25 [5])

Domain and Unknown Function:

Uopern CTR™  and u:U—>R

Equation:

Au:zz&-iu:o forx e U

=1

Constraints:
u=g forx e dU

where g : QU — R is a fixed known function.

Solution:
Cl’f‘ + Cz ifn=1
u(x) ;=< Ciln|r| + Cy  ifn =2
017“2_” + Cs if n Z 3
for constants C; and parameter r := |x|y. With r # 0. The constraint has not been applied.

Solution Technique:

Apply theory from Section I1.2.1-3.
(Continues)
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Section 1

Solution Technique:

Suppose (using the 2-norm) that the solution is a function of a radial parameter:

ri= x|y 1= (21)2 + ... + (z0)2

That is: uw = u(r) satisfies Au = 0.

Let us compute the Laplacian. Further assume r # 0. Using the Chain Rule and the Power Rule
yields:

1 x;
Ou(r) = 0,u-0;r =u 2T = Uy s —.

" 2 /(@1)2 + o F (Tn)?

Taking the second derivative then requires the Product Rule:

i i 1 1
O;iu(r) = 9; (ur . a:_) = 0;(u,) - i +u, - Oi(x;) - — +up -y - O (—)
r r

r r

r

: 1 1
:u,.,,-(Bir)-w——l—u,«-(l)-—qtu,q-wi-(—-2:8,-)
r

(Continues)

J<</ /<]
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Section 1

Solution Technique (Continued):

The problem boils down to solving the following ODE then:

n—1
urr"‘( )UTZO

T

Note that if u,, = 0 then the solution is just a constant function. This option is encompassed in
later results (i.e. m = 1 case with C; = 0). So, let us assume u,. # 0. Then we can rearrange and

divide to get:
1 (1 —mn)
— Upp = ——.
(. r

1—n

— O, (In|u,|) = .

= In|u,| = (1 —n)in|r|+C .

Upon integrating, we obtained the constant C'. Let’s use a rule of logarithms to bring the (1 — n)
inside the log and then exponentiate the equation to rid of the logs and apply an exponent rule
(e*T¥ = e® - e¥) (#algebra2):

C| 1—n|'

lu.| = e“|r

We may remove absolute value with a plus or minus out front, but we are going to relabel the
constant:

A= +e€

Hence:
u, = Ari "

In the last step, we would like to just apply the Reverse Power Rule when integrating, but this gives
us trouble when 1 — n = 0, —1 that is, when n = 1, 2. Respectively in these two cases, we get:

u(r) = A/rodr = Ar 4+ C,

and u(r) = A [ r~'dr = Aln|r| 4+ C,. The final case is clear then letting N := (1 — n) > 1:

A A
=A [ rNdr=——rNT' 4 Cy = =" 4 Co.
u(r) /r r N+1r + C, 5" + C,

Renaming the constants one more time gives the result. l

[<</ [<] 18



Section 1

REALITY CHECK:

Let’s make sure the solution obtained actually satisfies the PDE!

C’lr —+ Cz fn=1
u(xz) := {Clln|r| +C; ifn=2
Cl’l"z_n + Cz ifn 2 3

VS.

Au=0

Case (n=1):

r3

Oiu = C10;r = C1% and 9;u = Cy (% + x; - (“”’))

n = (x4)?
= Au=C-—-C =0.0
Case (n=2):
dou—1 B ad o=k a8 =L~ Ao
n 2
— —Au=———=(M—-2)—=0. 0
1 2 72

Cilaiu =2-—n)r* 1. % = (2 —n)r "z, and

b B = 1 2y (—n)r Tl B e (Cn)r R ()2

<</ /<] 0



3. (Homogeneous) Heat/Diffusion Equation (pgs.44-65 [5])

Domain and Unknown Function:

Uopen, € R™ X (0, 00) and u:U—>R

Equation:

ug— Au =0 for (x,t) e U

Constraints:
u=g for (x,0) € U

where g : QU — R is a fixed known function on the boundary.

Section 1

Solution: A ,
|fL\2
’U;((ﬂf, t)) = tn7€ 4t
for (x,t) € U. Boundary condition not yet met.
Solution Technique:
Apply theory from Section I1.2.1-3.
(Continues)

J<</ /<]
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Solution Technique: (I stress that this is adapted from Evan’s text! Also to be clear, I developed a
convention that @;u =: u; etc. but x; is just a coordinate. Should be clear from context hopefully.)

Suppose the solution has the form:
u(z,t) =t v(t Px).

Compute using the Chain Rule, Product Rule, and Power Rule where appropriate:

ou = —at_a_lv(t_ﬁw) +t7“- Zvi . (—ﬁt_ﬁ_lwi)
=1

= —at™ ot Pz) — oY (EPw) v

=1

Similarly,

n
Biu =t 0 (tPax) =t w; -t P8 =t Py
j=1

— 8“’& = t_a_ﬂvii . (t_ﬁ) = t—a—2ﬁ,vii
— Au=t"*"2PAv

Combining these results we get our PDE becomes:
uy — Au = —at ot Px) — Bt . (t Pz, Dv) — t7*" 2P Av = 0.

Dividing out the negative, setting 3 := 1/2, factoring out the common term and defining y := t =Pz,
we get:

== law(y) — _(y, Doy)) — Av(y)| = 0

But t=*~! £ 0 for any finite ¢, so we conclude:

av(y) = 5 (4, Do(y)) — Av(y) = 0

This is still a PDE, but at least the time parameter is gone. Notice it is radially symmetric in the
spatial variables.
(Continues)
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Solution Technique (Continued):

We have a new PDE that exhibits a radial symmetry:

aw(y) —  (y, Do(y)) — Av(y) =0

As in Laplace, we define r := |y|2 and assume v = v(r).

Then pulling from previous work, we compute:

d;v(r) = v, - vi
r

and hence: 1
(7 n—
Dv(r) = — and Av(r) = v + (
r

Substituting into the above yields:

n—1

1 ("
av(r) - §<y9 73/) — Upp — ( r )vr =0

But real inner products are bilinear, so together with r? = (y, y), this gives:

T n—1
av(r) — Evr — Vpp — v, =0

r

Rearranging:

Now the trick is here to use reverse product rule twice (or integrating factor technique?) and select
a so that things work. Observe that:

0, (’r"_lvr) = (n—1r""2v, +r"" o, and 0, (’r"v) = nr" v 4+ r"v,.

Then we get:

n n—1

1
ar (Tn_lvr) + 587‘ (,r.n,v) = rn_llvrr + (n - 1)Tn_2vr + — Uy + o

T
2 2
1 n n—1+'r n
=r v - |v, — —v
rr r 2 T 2

Which suggests we set a := m /2 in order to collapse the equation into:

v.

1
o, (r" v, + 58,, (r"v) =0

J<</ I<] 2
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Solution Technique (Continued (2)):

We can directly integrate the above with respect to r:
r" o, 4+ Er"v =C

for some integration constant, C';. We are interested in finding “a” solution, so assume we have
C; = 0 and v # 0. Then we can rearrange:

v, T
v 2
And the usual logarithm trick gives:
1,
In|v| = 4" + C,

Then exponentiating and defining A := +e2 as usual:

v(r) = Ae~ 1"

Now recall that originally our solution was of the form:

u(z,t) = t v (t Px)

But throughout we set 3 = 2, r = |y| = [t7Px| and a = 2. Thus, finally we arrive at:
- A i3
u(z,t) =t~ Aemalt P = o7
’ itn/2

J<</ I<] 23
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REALITY CHECK:

Let’s make sure the solution obtained actually satisfies the PDE!

A =3
u((w, t)) = WG 4t
VS.

u — Au =20

w2 —lz2  |ax|?
Ou = (—n/2)At™"/? 1 .e a4+ At V2w . i

4t _

4t2
A —=3 <|:1:|2 n
= ———e 4t . _ —
tn/2 4t2 2t

and the result is clear.

J<</ /<]
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4. (Homogeneous) Wave Equation (pgs.65-84 [5])

Domain and Unknown Function:

Equation:

Constraints:

Section 1

Solution:

Solution Technique:

... Next page.

J<</ /<]

(Continues)
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Solution Technique:

J<</ I<] 2%



Section 1

REALITY CHECK:

Let’s make sure the solution obtained actually satisfies the PDE!

VS.

[<</ [<] 27
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5. PLANAR WAVE SOLUTIONS - Collection of PDE’s (§4.2 [5])

> Includes:
(1) Heat Eq. (as in earlier entry), (2) Wave, (3) Klein-Gordon, (4) Schrodinger, and (5) Airy.

Since we are doing multiple at once, this article will be a little different in format.
All homogeneous and without auxiliary data. Just solutions at the moment.

Domain and Unknown Function:

Uopen € R™ X (0, 00) and u:U—>R

Separate Equation(s):

(1) ug— Au =0

(2) ugg — Au =0

(3) ugyy — Au + m?u =0
(4) iuy + Au =0

(5) Ut + Ugee =0 (R =1)

For any y € R™:
(1) 'U:(m,t) = e_|y|§teiy-ac.

(2) ’LL(:E, t) — ei|y|teiy-a}

(3) u(x,t) = ei\/Wteiy.w
(4) ’U,(m, t) = ei(y'$—|y|2t)

(5) u(z, t) = eilwa+v’D

Solution Technique:

Apply Undetermined Coefficients (See 11.2.3), using planar waves (model function):
u(x,t) = e'vz—aot)

where y € R™ and we allow o € C.
(Continues)
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Solution Technique: These are fairly easy.

(HEAT: u; — Au = 0)
1.) Let u(z,t) = €2~ for free y € R™ and o € C, then we get:
O = —ioe'V T = _jou(x,t)

and

dju = iyl e'We—ot)

— ajju — i2(yj)2ei(y.m—at) — _(yj)Zu(m,t)

== u; — Au = { — 10 + Z(yj)z] u(z,t) = [ —io + |y|3]u(z,t) .
=1
This equals zero precisely when:
1 .
o= lyl* = =iyl
Hence:

O
(Wave: uy — Au = 0)
2.) Let u(zx,t) = €@~ as before. Then:
ou = —iou
Ouu = —o’u
and
Au = [yl*u
— uy — Au=(—0®— |y|Hu=0
= o’ = —|y|*
— o = *i|y|
Hence:
O

(3-5.) [Exercise: The rest are for you to check!| W

J<</ I<] 2



Section 1

REALITY CHECK:

The proof is in the puddin-pop this time! See above.

(End of Entry 5)

J<<] </ 30



Section 1

6. (Homogeneous) Conservation Laws (p.113 [5])

Domain and Unknown Function:

Uopen € R™ X (0,00)  and u:U—>R

Equation:

us + H(x, Du) =0  for (x,t) € U

Constraints:
u=g for (x,0) € 8U

where g : OU — R is a fixed known function on the boundary and H : R?™ X R is also fixed.

Solution:

Given by solving the two systems from the theory (when possible).
Solution varies with instances of H (x, Du).

Solution Technique:

Apply Algorithm II1.1.2. This is done on the next page. Some of the work has been done
already in Technical Results Entry 4.

(Continues)
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Solution Technique:

(1)-(3) Have been taken care of in the aforementioned Results Entry. It should be noted that
we incorporated time as a variable and had to rename variables from the algorithm to be consis-
tent. We have:

F(y(s), z(s),q(s)) := q"'(s) + H(z(s),p(s)).

4.) To solve the first system, we need to compute partials of F'. One of these was taken care of

already (namely: 0,F = 0).

Next, compute:

OpiH  wheni#mn+1

Oy F' = 8,:(q"™") + 8y H (x, p) = { 1 wheni=n + 1

Lastly (in disagreement with the text), we compute:
By F = 0yi(q"") + 9 (H(wap))
— 8,:0,m1u(y) + (ayiH + _il 0 H - ayiayju(y))
=
= Oynirq + O, H + é Oy H - 84"

In this last step, we commute the partials (as we are in flat space), as to prioritize g* in the
expression. It should also be noted that 9,: H represents the partial w.r.t. the ith variable of H

(think: H (wq, ..., way,)). Now, there are two possibilities for ¢ again here:

8yn+1qi + ByiH + Z Bij(qi) . 3yjqi whenz #n + 1

9, F = W

8yn+1q"’+1 + '21 0, H - ayjq”‘H whent =mn + 1
J:

Plugging these results into the first system in the algorithm we get...
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Solution Technique (Continued):

i _ JOxH  whent#mn+41
vy = 1 whent=n+1

n+1 . ; )
Z:Z<{BPJH When];én—l—1>.qj

] 1 when 3 =n+1

8yn+1qi + 0, H + > aij(qi) . Byjqi when 2 #n + 1
i j=1
Oyrir@" ! + > 9y H - 8g" when 2 = n + 1
j=1

To actually solve this system, we need an instance for H that admits a solution.

To obtain such an H that is Physically derivable, interpret-able in our notation, and simple
enough to admit a solution is more down the rabbit hole than I'm willing to go here (especially
since we have a disagreement with the text for the expression of 9,: F. So the remainder is left as
an [[xercise: Finish the fight!]

REALITY CHECK:

Let’s make sure the solution obtained actually satisfies the PDE!

VS.
us + H(x,Du) =0
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7. (Homogeneous) System from Stoke’s Theorem (See Entry 3)

Domain and Unknown Function:

Uoppen CR®  and  w € T*(T*(TU))

with boundary QU = C (a closed loop). Assume U has no holes so that dw is exact.

Equations:
Given: dw := (1 + z?) f(x)dydz — 2zy f(x)dzdx — 3zdzdy
f(x) = 3tan™'(x)
(1) Oyws — Bowa = (1 + 2%) f ()
(21) Ow1 — Ozws = —2zy f(x)
(297) Opwe — Oywy = —32
Solution:

w = (=6zyz - tan"'(x))dz + (—3z(1 + z?) - tan"'(x))dy

Solution Technique:

Just assuming what we can get away with setting equal to zero some of the components and
seeing what works. This is like forcing the system to be diagonal or traingular.

(Continues)
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REALITY CHECK:

Let’s make sure the solution obtained actually satisfies the system!

w = (=6zxyz - tan"'(z))dx + (—3z(1 + z?) - tan™'(x))dy
f(x) = 3tan™'(x)

VS.
(1) Oyws — B,wa = (1 + x?) f(x)
(i1) w1 — pws = —2xyf(x)
(197) Opwao — Oyw1 = —32
Define:
wy 1= —6zyz - tan"'(x),
wy 1= —3z(1 + x?) - tan™'(xz), and
w3z = 0.
Then:
Ozw1 = —6yz[tan™1(x) + T1e7]  Oyw1 = —6wz- tan=1(x) 0.wy = —6zy - tan"1(x)
Ozwo = —3z[2x - tan™1(x) + 1] Oyw2 =0 O wa2 = —3(1 + z2) - tan™(x) | .
8;(,003 =0 Byw3 =0 Bzw3 =0
By comparing entries of the above matrix, one can see the result. |
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Breathe!
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II: General Techniques for Classes of Equations

As the structure of the problem wvaries, so too must the method of attack.

As a quick survey of what I've witnessed in the literature, for ODE’s, we have the brute force method
(algebraically manipulate equation and integrate, when possible); One can factor polynomial operators and
find solution to linear factors (taking extra steps for repeated roots) and applying the Superposition Princi-
ple; Use the multiplier method to change to reverse product rule problem; Guess solutions (such as complex
exponentials) with Undetermined Coefficients (apply auxiliary data to solve for these later); In this same
avenue, guess Series Solutions and solve corresponding Recurrence Equations; For systems, either diagonal-
ize or triangularize the matriz, brute force when possible; Using Fundamental Solutions to apply Variation
of Parameters Method, Laplace and other Integral Transform Methods, etc.

For PDE’s, I've seen Separation of Variables (featuring Fourier Series); the Method of Characteristics,
Undetermined Coefficients, and some Averaging over metric balls (as in solution to the Wave Eq.). For
systems, zeroing out components helps get down to a more fundamental solution. Numerically, I'll say
Iterative Procedures exist, using the PDE expression itself-here convergence and error tolerance are crucial
aspects of study.

In this section, I will present some of the methods pointed to from within the Solutions Catalog
(i.e. Section I).

Sub-Table of Contents:

({ Foliating the Graph ))

1.1) Method of Characteristics
> [Algorithm)|
1.1b) Remarks on the Solution

1.2) Method of Characteristics 2
> [Algorithm)|

({ Appealing to Symmetries ))
2.1) Translations, Dilations, Reflections, and Rotations
2.2) Representations of the Symmetric Group

2.3) Method of Undetermined Coefficients

> Rotation Invariance, Dilation Scaling Invariance
> Traveling Waves and Plane Waves
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({ Foliating the Graph ))
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I1.1.1: Method of Characteristics
[First Order, Linear, Non-homogeneous]

F(2,, 81,00y 8p) := > Xt — Apyq = 0,
=1

The references for this section are: [5, 11, 7, 6]. Suppose throughout this section that continuous
means continuous in each variable separately.

e Def: Briefly, for a given surface (or manifold) S, the tangent bundle, T'(S), is the disjoint
union of tangent spaces, T),(S), for each point p € §. A tangent vector v, € T,(S) can be
defined by the velocity vector of any curve through that point.

e Prop: Suppose a continuous f : RN — R is given and define a level surface as S, := f~*({c}),
for ¢ € R. Then:

Vfls L T(Se)

That is, the gradient field is orthogonal to the tangent bundle over the level surface.

Proof: Let p € S, be arbitrary. Then by definition of tangent vector on the level surface,
v, € Tp(S.), there exists a curve:
v:R— S,

t = (YH(E), - YN (1))
such that v(0) = p, vp = 8t’y(t)|t:0, and Vt, (fovy)(t) =c.

Now, take the standard inner product:

N N
(VI svp) = (Y 0if| 8y Y 0 (t)],_405)
=1 j=1

=3 (1], 0040 o) = 7 0O

Where the last equality is by the chain rule (see Entry 1). Now, we notice that 0y(f o~) = 0.
This gives us the result by arbitrariness of v, € T, (S,.) and then arbitrariness of p € S.. B

This clever use of the chain rule was inspired by (pg.917+ [7]).

(Continues)
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e Prop: Let u : R® — R be continuous. Then we have:
< Vu,—1>|. L T(Tu).

That is, the vector consisting of the gradient and -1 in the last slot is orthogonal to the graph of .

Proof: We may define an extended function whose zero level set is the desired graph:
u: R S R;
(15 eeey Ty Tng1) > U(T1y eeny ) — Tppy1,
We apply the previous proposition with ¢ := 0 and N := n + 1 to arrive at:
Val|, L T(So).

n+1 n
Then replace: S = T'u and Vu := > 0;u0; = > O;ud; — 19,11 =:< Vu,—1>. R
i=1 i—1

Recall our PDE takes the form:

F(iL‘, u, 81, Y 8n) = Z )\,3211, — >\n—|—1 = 0,
=1

where the coefficient functions are only spatially dependent A; = X;(x).

This can be factored into an inner product form:

n+1
(O Aid;, < Vu,—1>)=0.

i=1
where the vector fields defined on the graph (but evaluated under it), can be given names:

n+1
A(x) := Z Ai(x)0; and n(x) ;=< Vu(zx), —1 > .

Rewriting:
(Aym) = 0.

The recent proposition gives us that 7 is (orthogonal) to the graph of w. Since A is ortho to n, we
deduce that A is tangent to I'u! Otherwise written in abusive section notation:

n € I'(T(Tu)")
A € T(T(Tu))

(Next Page)
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Restating the tangency of A with the definition of tangent vector applied:

e Prop: For continuous w : R™ — R, solving our PDE, there exist differentiable curves through each

e 0
peTl'y

from the associated field A. B

in the graph whose velocities at those points are the vectors, {A(a:) ‘p} ,
peTlu

We now have curves through each point satisfying the velocity condition (only at their base point).
We need them to satisfy the velocity condition at every point (to make them integral curves).
The next proposition accomplishes this.

e Prop: Taking the previous proposition as hypothesis, we may construct any integral curve of A

from the family {'yp}

pel'y

Proof: Consider any two points p, ¢ € I'u and their associated curves 7, 4 in the family. We may
construct a new curve 7 4 passing through both points with matching velocities to v, and «4 by
truncating both curves and appending a smooth curve (of our choice in I'u) as suggested by the
figure (left).

Consider now cutting this appended curve at a midpoint and replacing by two new curves with this
same technique (right figure). Iterate on both sides of the midpoint.

If at any stage of this process if we break differentiability of the constructed curve:
Truncate the future of the curve past the break point. Pick a new point, ¢’, in an epsilon neigh-
borhood of the broken point to connect to. Continue.

If the above process terminates, extend the farthest future endpoint by the same epsilon neigh-
borhood point selection.

Once the future is completed to the extent possible (finite or infinite), repeat in past direction

with epsilon neighborhood point selection: g’ € Be(p), choose curve in between as in the initial
step. Repeat. Carrying out this process to completion constructs the integral curve. B
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% Theorem: For a first order, linear, (non-homogenous) PDE the graph of a continuous solution,
u : R™ — R is equal to the union of integral curves of the tangential vector field.

Proof: Given p € I'u, we have an integral curve through p since we have shown A is tangent at
every point. Arbitrariness of p gives one containment:

ru C | Im(y ).

peTlu

Now suppose ¢ = v,(t) for some integral curve passing through a point p. By the previous propo-
sition, we have shown that -, (t) consists of concatenated curves lying entirely within I'u. Hence

g € Tu. Arbitrariness ¢ € |J Im(7,(t)) gives the reverse containment. Hence equality. l
peTlu

On the next page, we use the above Theorem to create an algorithm for solving the PDE.
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ALGORITHM: “Method of Characteristics a.k.a. of Integral Curves”

1.) Identify the PDE as first order, linear.
2.) Factor it into the form (A, 1) = 0 (See above for details).
3.) Pick a point ¢ € U, then p = (z,u(x)) € OT'u. If A permits, solve the following:

{ %@ =M, 0 tiegomiy
with appended initial data '71,(0) = p.

4.) Realize (@, u(x)) = p = 7p(0) = (75(0), .., v2(0), ¥21(0)) implies :
u(w) = 471(0).

Note: Integration of the system in (3) gives us m + 1 new undetermined coefficients (a.k.a. +C*%).
The initial data adds (n) more equations to help us solve for these unknowns. So, there is one piece
of data missing and hence there should be another condition needed to fully solve.

5.) The boundary condition states:

u(x) = g(x) for all x € OU, given some function g : 8U — R.
From this, we deduce that on the boundary (as we are):

g(x) = v 7H(0).

And this provides the final equation to solve for the remaining coefficient.
6.) Upon completion of (1)-(5), the expression for «,(t) will be known explicitly.

By the above Theorem, this is a union component of the graph of the solution. So, we may
observe the values, u(z’) = v+ (¢') of the solution for ' € dom(u), by finding the correspond-
ing parameter value t' € R (which is basically the address of the point (', w(x’)) on the image of

’Yp(t))-
Unfortunately, finding t’ depends on local invertibility of the projection:

Yp := projen (v : R = (Tu)).

If v is locally invertible about the original boundary point € QU and x’ is in that neighborhood

then we have the solution along a curve through p:

vz’ € § C Im(,(t)), u(z’) = (5, ().

7.) Use &’ = ~,(t') to eliminate @ if it appears. [END ALGORITHM]
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‘ P (t) is known

Figure: Context of Algorithm II.1.1
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II.1b: Remarks on the Solution

Explicit Forms Require 2 More Conditions:

Reiterating, we have the restricted solution to the main PDE problem looks like:

where the union components are solutions parameterized over their projected integral curves, v, (%),
through given boundary points, p = (z, u(x)) € 0T'u, where:

’U,‘Sm : Sw Q Im(;?(w,u(w))(s)) — R

ulg (@) = @),

To get invertibility of ,(¢), we had to restrict to a subset Sy := B(0) N dom(J,(s)). This in
effect allowed us to eliminate the address parameter, ¢’.

A trick we've uncovered in some of the problems led us to conditionally go further and eliminate
the boundary variable, p = (x, u(x)), leaving the solution completely determined by &’ only. This
is good since then the initial blue presentation of the solution is not lying.

so we take ' € U and plug it in for the result u(z’).
The condition being that the expression for
T’ = (2}, 2h) = Bp(t) = (F,#), s 7 (1))

must be linear in the boundary variable € = (1, ..., &), in each component, so that we may solve
for x in terms of x’. If this is not the case, apply other methods to solve.

On Regularity:

The non-homogeneous term, A, 41 and the boundary function, g, show up in the last coordinate
function of v, when we solve the system of ODE’s. For u to be differentiable to any order then
requires at least A,+1 and g to both be differentiable of that order.

It is typically easier to judge regularity after you've gone through with the algorithm.

If Aj,+1 or g are contrived to not be differentiable, the solution above is called a weak solution.
This is relevant when we talk about computing the derivatives.
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II1.1: Method of Characteristics 2

(Non-hom. is built in to non-linearity). The reference for this section is (p.96+ [5]).

Last time, we were able to take the form of the equation and factor it into an inner product of
vector fields, which eventually led to the notion of the graph of the solution being (locally) foliated
by integral curves of the vector field.

This time, we don’t get such a convenient factorization of the equation. However, if we still
assume the graph of the solution is locally foliated (by curves, v, : I C R < T'u, related to the
operator in some way), we can actually stumble across another system of ODE’s, albeit different
than before, but which will lead to the explicit solution.

If the graph is foliated, then the domain can be foliated by a projection of these curves down to
last coordinate zero (recall the 4, (t) from Algorithm II.1.1 figure). Let us now consider one such

curve through a boundary point, p € 8Tu C R™*!, and relabel:

z(s) 1= Ap(s) = (2'(5), ..., 2" (s))

. o— 1 n
mo -« — ZL'(O) -« — (p ,ooo,p )-
(We replace t with s to avoid conflict when time is a variable. This should have been done before, but
without experience how were we supposed to know!)

The next step is to restrict our master equation to this curve and manipulate it from there to get

the system. Since we have:
F(x,u,Du) =0

restricting to the parameterization looks like:

F<m(s),u(az(s)),Du(az(s))) —0.

On the next page, we will be taking derivatives of the master equation with respect to each of its
variables, so it is convenient to define:

z(s) := u(x(s)) and [q(s) := Du(z(s))] <> [¢"(s) := 8;(u(x(s)))]

In other words, we write: F(z(s), 2(s),q(s)) = 0 so derivatives look like 8yi(s), Oz (s), and Oyi(s)-
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Reiterating:
z(s) = (' (8), ..., "(8)) with xo = x(0) = p,

z(s) =u(x(s)) and  ¢’(s) = 9;(u(x(s))).

Since z(s) and ¢*(s) have dependence on x(s), from the Chain Rule, we get (suppressing s):
3 j
awiF($,Z,C_I) - Z 8ach(m7z7Q) : 6i
J=1

+0.F@2,0) - (3 doul@)d] )

i=1

+ 3 9uF (2,2 q) ( S Oyenu(a) 65)
j=1 k=1

= 0,iF(x,z,q) + 8. F(x, z,q) - Oziu(x) + Z 0y F(x,2,q) » Opiziu(x) .

J=1

Recall: 6 = {1’ fa=> is the Kronecker Delta.

0, otherwise

Now, note that:
<F(a:,z,q) — 0) — Vi: (BwiF(a:,z,q) = 8,:(0) = 0>.

So the expressions above can be collected as follows (updating variable names):

(Next Page)
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Continuing, we have our original PDE and the Chain Rule gave us a set of equations for each 9,::
n
{ > 04F(x,2,q) -
Jj=1

— _ (awiF(a;, z,q) + 8. F(x, z,q) - q"(w)> }

ie{1,...,n}

Let us now observe some information provided by the parameter-derivative, 9,:

(the cases for the Bsx*(s)’s yield nothing new),
0s2(s) = Z 0,i2(8) + Osx? () = Z q’(s) - By’ (s),
j=1 j=1

and

{asqi(s) = Z 00iq'(s) - B! (s) = ) B, (s) - }.e{l .

=1

Written in this way, a possible connection between the darkBlue and darkRed equations presents
itself. Note the slight of hand in the last equality: 8,;q* = 8,:q?, since in flat space mixed partials
of w commute.

To connect the two equations would require:
Vk € {1,....,n}: OuF(z,z,q)(s) = 8:z"(s).

However, we do not know these equations hold apriori.

(Next Page)
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If we conditionally continue with this assumption, the bridge is made and we gather the system
of equations (from the previous page) over ¢ € {1,...,n}:

Tt = 3ti
— ¢' = —(0,F + 0.F - q)

= z = Z qj°3qu
j=1

where of course, we’ve shorthanded 9s¢(s) =: ¢ and suppressed all arguments of functions for
clarity. And applied the new assumption in the 2 equation.

There are 2n+1 equations here and 2n+1 unknowns: {x%, z,q'}. Provided we are able to solve
this system (of ODE’s), we have enough equations to do so.

The next step following the solution of this system is to determine the coefficients that appear via
s-integration. This is where the auziliary data (here the boundary condition) comes into play. The
analysis starts again on the...

(Next Page)
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We have by this point, found expressions for all *(s), z(s), and g*(s) up to some s-integration-
coefficients (there should be 2n+1 of them) [[xercise: Verify this with an explicit PDE problem].

To solve for these, we’ll need 2n+1 equations again.

To start, we have from the very beginning:
z'(0) = p’
and with a boundary condition for “known” g : U — R:
z(0) = u(z(0)) = g(x(0)).

Lastly, we impose the further wnitial conditions:

q'(0) = 8,:g(x(0))

which serve to complete the system. This however, requires g to be at least C*(9U).

Now that the theory is done. The algorithm is streamlined next:

J<</ I<] 50



Section II

ALGORITHM: “Nonlinear Method of Characteristics”

1.) Identify the PDE as first order, nonlinear with boundary condition:
F(x,u,D'u) =0

U|8U =g,

where g : OU — R is C*.

2.) Select a point, p € QU and suppose v, : I C R < U is an injective curve in the domain of
u, going through p. Define:

z(s) = Yp(s)

That is, Vi, x*(s) = 4%(s). And suppose we reparameterize to make:

xo := x(0) := p.

3.) Further define variables:
z(8) := u(x(s)) and q(s) := Dyu(x(s))

that is, ‘
Vi, q'(s) = Oziu(x(s)).

We thus have:
F(xz,z,q) = 0.

4.) Solve the system:
= 0y F
qi — _(aac’F + 0. F - qi)
n .
2= @ -0uyF
j=1

for the expressions {x(s), z(s), g(s)}, provided the system is solvable.

(Continues)
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Continuing:
5.) Following the solution to (4), solve for remaining integration constants with the system:
2(0) = 7
z(0) = g(=(0))
q'(0) = d,ig(z(0)).

6.) z represents the solution along the curve x. Possible inputs for the solution may be read off of
the image of the curve. To the extent that the curve is injective, the expression for the boundary
point may be eliminated (which is inherently desirable for “gluing” the solutions together for the

global result).
[END ALGORITHM]
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({ Appealing to Symmetries ))
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I1.2.1: Translations, Dilations, Reflections, and Rotations

This section was motivated by Ch.6, particularly (pgs.159-160 of [1]).

Consider V' := R" as a vector space with a basis 3. Then:

e Def: A translation is a map:

T:V >V
v—= v+ w

for some vector w € V. In coordinates this says:

One will notice that this an invertible transformation.

e Def: A dilation or scaling is a map:
T:V >V

V= A

for some scalar A € F := R (the underlying field). This is another invertible transformation (since

we are dealing with a field). In coordinates this is just:

(%1 V1
— A

Un Un

In more general context, when the terms are used simultaneously, dilation scaling refers to:

u(z, t) — A%u(Nx, \t).

e Def: A reflection in the i*"-slot is a map:
T:V >V

v—Tv

where in the basis, we have the invertible (idempotent) matrix expression:

1 0 e e 0 0 U1

0 0 0 :
[Tv]ﬁ = |0 —1 0 V;

0 0 0

0 0 - 0 1] [vn

J<</ /<]
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e Def: A O-radian, CCW-rotation about the it*-axis is a map:
T:V >V

v—Tv

whose coordinate expression in general is hard to get at. In 3 dimensions we have for example
rotation about x, y, and z:

1 0 0 cos0 0 —sinbB cos0 —sinf
[T]g= |0 cos® —sinb|, =0 1 0 , = |sin6 cosf
0 sin@ cosf sin@ 0 cosf 0 0

These are invertible maps [[Exercise: Prove this! The inverse matrices just have —@ inserted.]
Intuitively, rotations have start and stop vectors as well as an invariant axis. So the rotations
happen in a 2D subspace. This manifests as the sine and cosine being in different locations with
the fixed axis having a 1.

In lieu of a good general coordinate expression, to work with the higher dimensional cases, we
try to encompass rotation operators with the following:

e Def: An orthogonal transformation is one whose matrix representation has all mutually ortho-
normal columns (w.r.t. the standard inner product). To put this in symbols:

1, ife =7
([Tp,i 5 [T]ay) = {0, otherwise.

These have other characterizations as well, such as A*A = I,,, where A := [T']g but the point is
we abstract a property of the above matrices.

Translations, dilations, reflections, and rotations may be composed to get more complicated
ones. We don’t concern ourselves with this here. Next we look at some other transformations
provided by...
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I1.2.2: Representations of the Symmetric Group

e Def: The Symmetric Group is the collection of all permutations on n-indices, which in fact
forms the algebraic structure of a group. They can be uniquely displayed with increasing cycle
notation, such as:

(256), (1234), (1), (27), etc.

These read from left to right as such: “2 goes to 5, 5 goes to 6, 6 goes to 2”7 etc. When we deal with
algebraic operations between them such as their composition or formal linear combinations over a
field, it helps to save the information into variables (conventionally greek symbols):

oc:=(256), 7:=(1234), etc.

e Def: A group representation is a group homomorphism:
p:G— GL,(V)

where G L,,(V') is the group of invertible linear operators on a vector space of our choice. Of course,
when we choose a basis, we are mapping the group elements into their corresponding invertible
matrices.

e Def: In one case for G := S,,, these matrices, [p(o)]g are called permutation matrices.

Letting V' := R™, we can define “a” representation by acting the permutations on the axes of the
space. For example in the figure we portray a 2-cycle in 3-space:
z (12) z

m

X y

If we collect the images of the bases vectors (taken to be axes), we get the associated matrix:

0 1 0
P(12)]p,, = (1 0 0.
0 0 1

Similarly, we obtain all the other 2-cycles. And conveniently, these generate all of .S,, so we have the
full map detailed by matrix multiplication (appeal to group hom). Note that these are orthogonal
matrices and that products of orthogonal matrices are orthogonal (easy proof). There are other
representations of S, of course. See a Rep. Theory text for more. Let’s take a step back next

page...
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11.2.3: Method of Undetermined Coeflicients

Method: Guess a particular form of solution. Plug it into the PDE and see what the resulting
equality tells you about your coefficients. Apply auxiliary data later to solve for unique coefficients
etc. Some examples using this method are listed below:

e Rotation Invariance and Dilation Scaling Invariance:

In the Laplace and Heat equations, we were able to assume the solution was of the particular
form:
u = u(r) = u(|z|2) resp. w =t u(|t Px|y),

by naively appealing to the observations that the corresponding PDE’s held rotational invariance
(resp. dilation scaling invariance) among their coordinate expressions. Upon substitution of these
special solution forms, the PDE’s reduced to ODE’s and then were solvable by lesser means. A
similar appeal to dilation scaling is done in a solution to the Porous Medium Equation (p.185 [5]).

e Traveling Waves and Plane Waves:

e Def: (p.176 [5]) For a PDE with real variables (€1, ..., n, nt1 = t), a solution of the form:
u(z,t) = v(y -z — ot),

where y € R™ and o € R is called a plane wave. Additionally we say the:
> Wavefront is normal to y,

> Wave Numbers are the {y;}icq1,....n}

> Time Frequency is o,

> Speed is given by ﬁ, and the

> Profile is given by the function v.

In the special case where n = 1, this solution form is called a traveling wave.

We will see many examples of complex-valued, exponential plane wave solutions,

u(x,t) = eilvz—at),

with o € C, used for solving Linear PDE’s with M.o.U.C.! To name a few: Heat, Wave, Klein-
Gordon, Schrodinger, and Airy can be solved this way. Other traveling wave solutions can be
observed as well in KdV and Scalar Reaction-Diffusion (Section 4.2 [5]).

[ Study the relationship between the solution forms we’ve encountered and the
respective coordinate transformations developed in this Section (I1.2). Consider as well, applying
permutations to multi-variable polynomials.|
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Breathe!
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III: Technical Results Entries

The purpose of this section is to be a toolbox that is distinct from the more theoretical toolbox of
Section II. When something is too lengthy to put in the discussion without ruining the flow, it goes
here.

Sub-Table of Contents:

Entry 1: Statement of the Chain Rule
Entry 2: Differentiating Integrals
Entry 3: (Q&A) A System of PDEs in Stoke’s Theorem

Entry 4: (Q&A) On Calculating M.o.C.-System for Conservation Laws
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Entry 1: Statement of the Chain Rule

e Prop: Let f : R™ — R™ and g : R®™ — R be continuous mappings of Euclidean spaces such that

their composition:
gof:R™—>R

is well-defined. Then the following formula holds:

Bi(go f) =D 0g(f's s f") - Bif.
j=1

Weak Proof: Atomically, if g := f' - f2, the formula yields:
di(gof)=r*-af' + f'-0:f%

which agrees with the known product rule from basic calc. [Exercise: The real proof should be a
difference quotient argument.| [J

We will use this formula countless times!
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Entry 2: Differentiating Integrals

This results entry was influenced by a discussion of the Reality Check (from the Non-Hom. Transport
solution), that I asked on Math Stack Exchange [13]. They quoted Liebniz’ Integration Rule,
which led me to reference [12], but I didn’t believe what I found initially, so I went back to first
principles, namely the definition of derivative.

e Prop: For a continuous function of two variables, f(s,t), the time derivative of the s-integral
with t as the upper limit is given by:

at/o F(s,t)ds = f(t,t)—|—/0 B, f (s, t)ds.

Proof: Writing out the difference quotient:

t 1 t+h t
8t/0 f(s,t)ds := }lll_rf(l)ﬁ /0 f(s,t+ h)ds — /0 f(s,t)ds]

Adding by zero:

/ (s, t+h)ds—/ (s, t)ds+/ (s, t)ds —/ (s, t)ds] |

Combining the second and fourth terms:

t+h t+h

t+h
f(s,t+ h)ds — / f(s,t)ds +
0

£(s, t)ds] .

Combining the first two and distributing the limit and the scalar yields:

t+h

. .1 e
= lim ; E[f(s,t—kh) — f(s,t)]ds—{—}lll_rf(llﬁ/t f(s,t)ds

t 1 t+h
= /0 O:f(s,t)ds + }lll—r}lg.)ﬁ/t f(s,t)ds.

Now the tricky part is handling this mysterious indeterminate form on the right. We split the limits
with a point sg € (t,t + h) and separate into two integrals, applying (fab =—[)):

/tt+h f(s,t)ds = /t+h f(s,t)ds — /s: f(s,t)ds (%)

£

Define F(u,t) := f:) f(s,t)ds. Then (x) = F(t+ h,t) — F(t,t). Applying the limit and

scalar gives:

1
lim E[F(t + h,t) — F(t,t)] =: 0, F (u,t)| _, = f(t,t)

by the Fundamental Theorem of Calculus Part 1, (pg.381 [7]). B (Discussion Continues)
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Notice that in the above, we are free to assume f has any number of extra variables (as long
as they are independent of s and ¢t. So the result applies to f(x, s, t) as well, where x € R™ (as
in the motivating problem). The extra variables literally just get carried through the entire proof.

More generally, one can assume the upper limit is a function of ¢ instead (not just a basic linear
function), following through with the proof, you will notice the chain rule comes into play and we
get a similar result. [FExercise: Carry this out!]
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Entry 3: (Q&A) A System of PDEs in Stoke’s Theorem
The context for this discussion is a Q) and A that I answered on Stack [14)].

Question:
I am doing some exercises and I don’t understand what is wrong with my solution here.
The problem is: given the integral

I= /5(1 + %) f(x)dydz — 2xy f(x)dzdx — 3zdxdy

Find such a continuously differentiable function f such that the integral I is equal for all surfaces
S, whose border is a circle C := {(cost,sint, 1) | t € [0,27]} and then calculate the integral I.

My thinking is that any function that is defined everywhere and C?! should be alright! Let’s
denote ﬁ the vector field over which we are integrating. For any well defined C* function f(x),
field ﬁ will be well defined and C*. Then by Stokes theorem we have:

/ rotﬁdg = ﬁd’?
s as

where 8S = C, which is a fixed number, so the integral on the left will be equal for every surface
S with the same border.

However, the solution uses Gauss’s theorem instead and shows that the sufficient condition is that
div R = 0. It also states (without proof) that this condition is also necessary.

To sum up, I would appreciate if you help me figure out

1) What is wrong with my reasoning using Stokes theorem? 2) How to show that divR =0
is a necessary condition?

My Initial Comment:

Hypotheses aside, the general version of this theorem looks like: [, dw = | ox @ - So the an-
swer to this question requires finding w with the given info. I.e. design w with choice of f(x) such
that dw is as above. What you have written for the integral equality is missing ”curl” and dot
products. This is not divergence theorem. If we try to apply the Poincare Lemma, we need to show
d(“dw”) = 0, this forces f(x) = 3tan='(x) for it to be closed. Though this doesn’t give the w
we need for the rest of the problem.

(Continues)
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My Answer:

The expression in a chart for a differential 1-form (using Einstein conv.) looks like:
w = w;dx

— dw = dw; A dx® = ijidwj A dxt.

For n = 3, we have (invoking multilinearity and skew-symmetry of A) that:

dw = (Opwidx A dx') + (Oyw;idy A dz*) + (8,w;dz A dx?)
= (8mw1da: A dx + Orwadx N dy + Orwsdx A dz)
+ <8yw1dy A dx 4 Oywqdy A dy + Oywsdy A dz)

+ (Bzwldz ANdx + O,wadz N\ dy + 0.wzdz A dz)

= (Opw2 — Oywr)dx A dy + (Oyws — O,w2)dy N dz + (Opws — Orw1)dx A dz

= (Oyws — O,wq)dydz + (0.w1 — Oyws)dzdx + (Oyw2 — Oyw1)dxdy.

Since we have:

dw := (1 + x?) f(x)dydz — 2zy f(x)dzdx — 3zdxdy
Combining with the above gives a system that w satisfies:
(1) Oyws — O,wa = (1 + z°) f(x)
(i) Orw1 — Ozw3 = —2xyf(x)

(297) Opwo — Oyw1 = —32

(Continues)
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Ans (Continued):

Now, bear with me as I proceed to find (a) solution to this system (not claiming uniqueness).

If we assume that:
wg =0,

then (i) and (ii) simplify to:
O:wz = —(1 + z?) f(x)
O,wy = —2xyf(x)

Integrating these with respect to z gives:
wi = —2zyz f(z) + Gi(x,y)

wy = —2z(1 + x2) f(z) + Ga(z,y)

where G;(x,y) are constants of integration w.r.t. z.

Let’s assume these vanish identically as well. Then combining these results with (iii) gives:

Opwe — Oywr = —z[2zf(x) + (1 + ) f'(z)] + 2z2 f(z)

= —z(1+2*)f'(x) = -3z

Assuming z # 0 and x # 1 gives:
3

14+ x2

f(z) =

Or equivalently:
f(z) = 3tan"'(z) + C.

This is a good reaffirmation of the exactness discussion! Take C' = 0.

Putting this all together gives (a) primitive:
w = (—6zyz - tan"'(z))dx + (—3z(1 + z?) - tan"'(x))dy

Provided z # 0 (which won’t matter over C).

Finally, in your application of Stoke’s Theorem:

I:/dw:/ w
s 88=C

So dump in the parameterization for C (i.e. (x,y, 2)(t) = (cos(t), sin(t), 1)) for t € [0, 27|

and the result will follow! Bl
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Entry 4: (Q&A) On Calculating M.o.C.-System for Conservation Laws

The context for this discussion is p.118 of Evan’s PDE text and my @ and A that I self answered
on Stack [15].

Question:
In general, for the (Nonlinear, First Order) Method of Characteristics, we have a parameterized
curve:
z(s) = (z'(8), ..., "(8))
and some related variables , for an unknown (smooth enough) function, u : R™ — R:
z(s) = u(x(s))

P'(s) := dpiu(z(s)),
for i € {1,...,n}.

With these definitions, one proceeds to a certain system of ODE’s that I won’t list here.

In a special case relating to the Hamilton-Jacobi equations, we have time as a separate do-
main variable, which changes the above to:

y(s) := (z(s),t(s)) = (¥'(8), s y"(5), y" ' (5))
z(s) := u(y(s))
a(s) :== (q" (), s 4" (), @1 (3))
where

Vi < m, yi(s) i= @i(s);

y"(s) = t(s);
Vi < n, ¢*(s) := p*(s); and
q"(s) = Ontru(z(s))-

This time the unknown function is w : R™ X [0, 00) — R.

(Continues)
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Q (Continued):

Consider now the PDE, F((x,t),u, Du) = 0, instantiated as:
us + H(x, Du) = 0.
If we restrict to the curve, x(s), this looks like F'(y, z,q) = O:

q"*'(s) + H(z(s),p(s)) =0

with & and p understood as the first n coordinates of y and q respectively.

> > When computing the RHS for the system of ODE’s (not listed), the author states: 8,F = 0.
At first glance, you don’t see z in the equation, but recall we defined ¢*(s) = 8,:2(s). So there

are contributions from both terms (g"**, H(x, p)) that require [computation of]:
Bz (8yz Z) .

How does one further evaluate?

My Answer:
If we write out the difference quotient for z (using function variables), we get:

(8yi)(Z(S) + h(s)) — (8yi)(2(3))

0.(0yiz(s)) := h(sl)i_r>r(l)(s) (o)
s (0,)(2(9) + (B) ((s)) = (By) (2(5))
h(s)—)O(s) h(S)

(8y:) (h(s))

h(s)=0(s)  h(s)

(%)
by Linearity of the partial operators, 8,:(-), in their function variable. But
0,:h(s) = 0(s)

since h(s) doesn’t contain y® as a variable (technicality here). So the desired limit (%) is zero.

This gives:
0.F(y,z,q) = g+ 0.H(z,p) = BZ(ay"‘Hz) + Z aij(:IZ,p) : 82(8yjz) =0.0
j=1

(Back to Solutions Catalog)
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specified here. If you keep this in mind while reading, it makes accessing information in the docu-
ment easy. Press back to get started.

Oh, and preliminary knowledge required to read this is say Calculus III and Real Analysis (see
my other release for R.A. and Topology)!
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