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1. Limits and Complex Differentiability

———————————————————————————————————————————–

• Def: A complex series {zn}∞n=0 is convergent to z ∈ C if ∀ε > 0 ∃N such that ∀n ≥ N , |z − zn| < ε.

• Def: A series {fn(z)}∞n=0 is uniformly convergent to f(z) if ∀z ∈ C, ε > 0 ∃N such that ∀n ≥ N ,
|f(z)− fn(z)| < ε.

• Def: The limit of f(z) as z approaches z0 exists and equals L, denoted lim
z→z0

f(z) = L if

∀ε > 0, ∃δ > 0 such that ∀w ∈ C we have |z − w| < δ =⇒ |f(z)− f(w)| < ε.
Notice then that if the limit exists at z0 and f(z0) = L, then f is continuous at z0.

• Def: lim
z→∞

f(z) := lim
z→0

f(1/z).

As well, we have: lim
z→a

f(z) =∞ if ∀ε ∃δ, ∀z ∈ B(a; δ) =⇒ f(z) ∈ C−B(f(a); ε).

• Def: We define the derivative of f(z) at z0 by:

lim
z→z0

f(z)−f(z0)
z−z0 =: f ′(z)

If such a limit exists, we say f is complex differentiable, holomorphic, or analytic at the given point
(synonyms). This can be generalized to verbage on open regions G ⊆ C with special case G = C having
special name for f being entire.

• Def: If G ⊆ C is an open region and f is a function defined and analytic in G except at poles (to
be defined later), then f is called meromorphic on G.

• Thm/Def: The following Cauchy-Riemann Equations must be satisfied by analytic functions:

Writing f(x+ iy) = u(x, y) + iv(x, y), then
ux = vy and uy = −vx

We say for f ∈ C2(R), that f is harmonic if it satisfies ∆f = fxx + fyy = 0.
Taking second derivatives of the C.R. equations and adding, we see that both component functions u and
v are harmonic. In the event that two harmonic functions u and v exist making f = u + iv analytic, we
say u and v are harmonic conjugates.
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2. Zeros, Singularities, and Series Expansions

———————————————————————————————————————————–

• Def: If f : G → C is analytic and a ∈ G satisfies f(a) = 0 then a is a zero of multiplicity m ≥ 1 if
there is an analytic function g : G→ C such that f(z) = (z − a)mg(z) where g(z) 6= 0.

• Def: A function f has an isolated singularity at z = a if ∃R > 0 such that f is defined and ana-
lytic on B(a;R)−{a}, but not at a. The point a is called a removable singularity if there is an analytic
function g : B(a;R)→ C such that g(z)=f(z) for ∀z ∈ B(a;R)− {a}.

F Theorem 1.2 (pg. 103 Conway): If f has an isolated singularity at a then a is removable iff:

lim
z→a

(z − a)f(z) = 0

• Def: If z = a is an isolated singularity of f then a is a pole of f if lim
z→a
|f(z)| =∞.

If f has a pole at z = a and m is the smallest positive integer such that f(z)(z − a)m has a remov-
able singularity at z = a, then f has a pole of order m at z = a.

• Def: If an isolated singularity is neither a pole nor a removable singularity, it is called an essential
singularity.

• Laurent Series Development (See pg.107 for computing coefficients in terms of integrals)

More practically, we utilize the power series 1
1−z =

∞∑
n=0

zn convergent for |z| < 1 to compute Laurent

series for given functions by transforming our expressions into ones of the corresponding form above. More
often then not, partial fraction decomposition is also utilized.

Examples:

1.) Say we have a function of the form:

1
a−b(z−c) = 1

a ·
1

1−
(

b
a (z−c)

) = 1
a

∞∑
n=0

(
b
a
(z − c)

)n
This is convergent on | ba(z − c)| < 1 or in other words convergent on B(c; |a

b
|).

2.) Similarly, if we have:

1
a−b(z−c) = −1

b(z−c) ·
1

1− a
b(z−c)

= −1
b(z−c)

∞∑
n=0

(
a
b
· 1

(z−c)
)n

This is convergent on |ab ·
1

(z−c) | < 1 or in other words convergent on C−B(c; |a
b
|).

This second sum can be rewritten with negative indices so that we get a more complete series look of the

form
∞∑
−∞

an(z − c)n. This reduces the problem of finding the Taylor and Laurent series to applying the

appropriate formulas above to functions analytic in the corresponding regions of convergence.

• Def: The residue of f at z=c, denoted by Res(f, c) is just the −1 power term in the Laurent
expansion.

TABLE OF CONTENTS 2



3. Paths, Winding Numbers, and Contour Integrals

———————————————————————————————————————————–

• Def: A path from a to b in C is just a map γ : [0, 1]→ C such that γ(0) = a and γ(1) = b.

We usually require regularity class C0 that way piecewise integration is possible (i.e. functions pre-
composed with C0 remain integrable). There is mention of more general rectifiable paths, we won’t go
there. Also, sometimes smooth is used to mean continuous (not C∞, watch out!). For what follows, when
you see “rectifiable” just think γ is piecewise continuous.

• Def: A curve is the geometric abstraction of a path in the sense that it is an equivalence class of
paths up to re-parameterization. However, the distinction in terminology is blurred.

• Def: The trace of a path γ : [0, 1]→ C is defined as {γ} := γ([0, 1]).

• Def: If γ is a closed rectifiable curve in C then ∀a /∈ {γ},

n(γ; a) := 1
2πi

�
γ

1
z−adz

is called the index of γ with respect to a. It is also called the winding number of γ around a
(counts the number of times γ wraps around a in the clockwise direction).

For simple closed curves, n(γ; a) can be found visually. These will be useful for calculations of inte-
grals with Cauchy’s Formulas (see results section for formulas).

• Def: For a smooth curve γ and a complex valued function f ∈ C0({γ}), we define the line integral as:�
γ
f(z)dz :=

�
b

a
f(γ(t)) · γ′(t)dt

This is also called a contour integral.

There are initially two ways to calculate such beasts, either use the fundamental theorem for line inte-
grals (see Thm IV.1.18) when the primitive is known or dump in the parameterization for γ and seperate
real and imaginary parts of the integral making it two real integrals.

Otherwise, we have to explore other techniques using Cauchy’s formulas and winding numbers, partial
fraction decomposition, series expansions, and/or other real analysis tricks once we reduce to that case.
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4. Results (Compressed/Expanded)

———————————————————————————————————————————–

[1] • f ′ ≡ 0 and analytic =⇒ constant (III.2.9: p.37)
[2] • Exp(z) and Log(z), branches (See: III: p.39)
[3] • Conformal Maps (III. See p.46)
[4] • Mobius Transformations (III. See p.47)

[5] • Prop IV.1.17 (IV: p.65)
[6] • Theorem (IV.1.18: p.65 FTCforLI)
[7] • Theorem IV.2.8 (p.72) Analyticity and Series Expansion
[8] • Cauchy’s Estimate (IV.2.14: p.73)

[9] • Liouville’s Theorem (IV.3.4: p.77)
[10] • Zeros Theorem (IV.3.7: p.78)
[11] • Cauchy’s Integral Formula’s (IV.5.4/6/((8))) p.84-86)
[12] • Morera’s Theorem (IV.5.10 p.86)

[13] • Classifying Isolated Singularities Theorem (V.1.18: p.109)
[14] • Residue Theorem (V.2.2: p.112)
[15] • Handling Infinite Limits in Integrals (V: See p.113)
[16] • Rouche’s Theorem (V: p.125)

[17] • Argument Principle (V: p.123)
[18] • Max Mod Theorem (VI.1.1: p.128)
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4. Results (Compressed/Expanded)

———————————————————————————————————————————–

• Prop III.2.10 (p.37):
If G is open and connected and f : G→ C is differentiable with f ′(z) = 0 for all z ∈ G, then f is constant.

———————————————————————————————————————————–

• On Exp(z) and Log(z) (III: p.39):

We effectively define:

f(z) = Exp(z) :=
∞∑
n=0

zn

n!
and

g(z) = Log(z) := ln(|z|) + iArg(z), where Arg(z) =

(
tan−1

( Im(z)
Re(z)

))
(modπ)

The above log definition is known as the principle branch. Other branches are given by:

• Def: If G is an open connected set in C and f : G → C is a continuous function such that z = ef(z) for
all z ∈ G, then f is a branch of the logarithm.

One will notice that we get a class of branches of log by translating Arg(z) by 2πk for k ∈ Z. Other
classes are given by precomposing with a homeomorphism.

———————————————————————————————————————————–

• On Conformal Maps (Thm III.3.4: p.46):
If f : G→ C is analytic then f preserves angles at each point z0 of G where f ′(z0) 6= 0.

If f is analyitic and f ′(z) 6= 0 for all z ∈ G then f is conformal. The converse is also true.
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RESULTS TOP

• Mobius Transformations (III. See p.47):
Def: A mapping of the form S(z) = az+b

cz+d
is called a linear fractional transformation. If {a, b, c, d} ∈ C

also satisfy ad− bc 6= 0 then S(z) is called a Mobius Transformation. The basic ones are given below.
Note that they close under composition.

S(z) = z + a is a translation,
S(z) = az (with a > 0) is a dilation,
S(z) = eiθz is a rotation, and
S(z) = 1

z is inversion.

———————————————————————————————————————————–

• Prop IV.1.17 (IV: p.65): (Special Case)
Let γ be a smooth curve and suppose that f is a function that is continuous on {γ}.
Then:

∣∣�
γ
f
∣∣ ≤ max{|f(z)| : z ∈ {γ}

}
· length(γ)

———————————————————————————————————————————–

• Theorem (1.18: p.65 FTCforLI):
Let G be open in C and let γ be rectifiable in G with initial and terminal points α and β respectively. If
f : G→ C is a continuous function with a primitive F : G→ C, then:

�
γ
f = F (β)− F (α)

———————————————————————————————————————————–

•Theorem IV.2.8 (p.72) Analyticity and Series Expansion:

Let f be analytic in B(a;R), then f(z) =
∞∑
n=0

an(z − a)n for z ∈ B(a;R), where an = 1
n!
f (n)(a) and

this series has radius of covergence ≥ R.

———————————————————————————————————————————–

• Cauchy’s Estimate (Cor. IV.2.14: p.73):
For f analytic in B(a;R) with ∀z ∈ B(a;R), |f(z)| ≤M , we have:

|f (n)(a)| ≤ n!·M
Rn

———————————————————————————————————————————–

•Liouville’s Theorem (IV.3.4: p.77):
If f is a bounded entire function, then f is constant.

———————————————————————————————————————————–

• Zeros Theorem (IV.3.7: p.78):
Let G be a connected open set and let f : G→ C be an analytic function. Then TFAE:

(a) f ≡ 0,
(b) ∃a ∈ G with ∀n ≥ 0, f (n)(a) = 0, and
(c) {z ∈ G | f(z) = 0} has a limit point in G.
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RESULTS TOP

• Cauchy’s Integral Formula’s (IV.5.8) p.84-86):
Let G be an open subset of the plane, f : G→ C analytic. If γ1, . . . , γm are closed rectifiable curves in G

such that
m∑
k=1

n(γk;w) = 0 ∀w ∈ C−G, then we have ∀a ∈ G− {γ} and ∀k ≥ 1:

2πi
k!
f (k)(a) ·

m∑
j=1

n(γj; a) =
m∑
j=1

�
γj

f(z)
(z−a)k+1dz

———————————————————————————————————————————–

• Morera’s Theorem (IV.5.10 p.86):
Let G be a region and let f : G→ C be a continuous function such that for every triangular path T ⊆ G,�
T
f = 0, then f is analytic in G.

———————————————————————————————————————————–

• Classifying Isolated Singularities Theorem (V.1.18: p.109):

Let z = a be an isolated singularity of f and let f(z) =
∞∑

n=−∞
an(z − a)n be its

Laurent Expansion in ann(a; 0, R). Then:

(a) z = a is a removable singularity iff an = 0,∀n ≤ −1 (i.e. no negative power terms),
(b) z = a is a pole of order m iff a−m 6= 0 and an = 0, ∀n ≤ −(m+ 1) (i.e. m negative terms), and
(c)z = a is an essential singularity iff an 6= 0 for infinitely many negative integers.

———————————————————————————————————————————–

•Residue Theorem (V.2.2: p.112):
Let f be analytic in the region G except for the isolated singularities a1, a2, . . . , am. If γ is a closed
rectifiable curve in G which does not pass through any of the points ak and if γ ≈ 0 in G, then:

1
2πi

�
γ
f =

m∑
k=1

n(γ; ak) ·Res(f ; ak).

For definition of ‘≈’ see p.95.

F For poles of order m, we may calculate Res(f ; a) = lim
z→a

(z − a)mf(z) (think Laurent Series of f).
———————————————————————————————————————————–

• Handling Infinite Limits in Integrals (V: See p.113):
The trick seems to be to use an integral of a nice function close to the given one on a nice finite curve,
apply the residue theorem to this new integral, algebraically solve for the integral that you want given a
relationship to the nice integral, then take the limit as the finite curve goes to infinite radius.
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RESULTS TOP

• Rouche’s Theorem (V: p.125):
Suppose f and g are meromorphic in a neighborhood of B(a;R) with no zeros or poles on ∂B(a;R). If
Zf , Zg (Pf , Pg) are the number of zeros (poles) of f and g inside γ counted according to their multiplicities
and if |f(z) + g(z)| ≤ |f(z)|+ |g(z)|, then Zf − Pf = Zg − Pg.

———————————————————————————————————————————–

• Argument Principle (V: p.123):
Let f be meromorphic in G with poles p1, . . . , pm and zeros z1, . . . , zn counted according to multiplicity. If
γ is a closed rectifiable curve in G with γ ≈ 0 and not passing through p1, . . . , pm, z1, . . . , zn, then:

1
2πi

�
γ

f ′(z)
f(z)

dz =
n∑
k=1

n(γ; zk)−
m∑
j=1

n(γ; pj)

———————————————————————————————————————————–

• Max Mod Theorem (VI.1.1: p.128):
If G is a region and f : G→ C is analytic such that ∃a ∈ G with ∀z ∈ G, |f(z)| ≤ |f(a)|, then f is constant.
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