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PART I

1. Basic Structures

• Def. 1.1: An algebraic structure is a collection A = {A, (fi)i∈I , τ}, where A is the underlying set
or universe, the fi are indexed operations with a corresponding indexed arities listed in the vector
τ = (ni)i∈I called the type. Most examples just state explicitly the type instead of listing it.
——————————————————————————————————————————————–

• Def. 1.2: A group G = {G, {∗, 1}, (2, 1)} is a set together with a unary operation 1 : G → G; 1(g) = g
(a.k.a. identity) and an associative binary operation ∗ : G×G→ G (called product or composition), such
that ∀g ∈ G, ∃g−1 ∈ G for which g ∗ g−1 = g−1 ∗ g = 1.

A group is called abelian if ∗ is also commutative.

• Def. 1.3: A ring with unit R = {R, {+, ∗, 0, 1}, (2, 2, 1, 1)} is an abelian group in {R,+, 0} and a
semigroup in {R, ∗, 1} (that is, R is not closed under ∗ inverses) and for which distribution of ∗ over +
holds. A ring is commutative if ∗ is.

• Def. 1.4: A field F = {F, {+, ∗, 0, 1}, (2, 2, 1, 1)} is an abelian group with respect to both pairs of
operations as above.

• Def. 1.5: A vector space over a field V ≡ V/F = {V ∪ F, {+, ∗, 0, +̃, ∗̃, 0̃, 1̃}, (2, 2, 1, 2, 2, 1, 1)} is
an abelian group in {V,+, 0} together with an associative field action (binary operation) ∗ : F × V → V
and distribution properties for ∗/+ and ∗/+̃. The tilde operations are for the field.

• Def. 1.6: An R-module or module over a ring V ≡ V/R = {V ∪R, {+, ∗, 0, +̃, ∗̃, 0̃, 1̃}, (2, 2, 1, 2, 2, 1, 1)}
is an abelian group in {V,+, 0} together with an associative (left or right) ring action ∗ : R × V → V or
∗ : V ×R→ V with distribution properties for ∗/+ and ∗/+̃.

• Def. 1.7: A (traditional) algebra over a field or ring A = {A, 〈·, ·〉, (2)} is simply a vector space or
a module A respectively, together with a bilinear operation 〈·, ·〉 : A×A→ A.

Notice here in (1.7) we have shorthanded the mass of operations for the vector space and its field
or ring. This is done in context with all algebras. Some “traditional” algebras we will see are Euclidean
and Hermitian spaces with their bilinear form <,>: A× A→ A (Section II.6) and Group Rings (Section
II.8).

• Def. 1.8: A group ring, RG-module, or group algebra is a traditional algebra generalized to the case
of not necessarily commutative “additive” group.

We denote RG ≡ R[G] = {A, 〈·, ·〉, (2)}, where A =
{ ∑
g∈G

αgg | αg ∈ R
}

“formal linear combinations”.

Addition + is defined via
∑
g∈G

αgg +
∑
g∈G

βgg =
∑
g∈G

(αg+̇βg)g, where we use +̇ in the ring.

The ring action is given by α ∗
∑
g∈G

αgg =
∑
g∈G

(α∗̇αg)g.

And the bilinear operation is given by:
〈 ∑
g∈G

αgg,
∑
g∈G

βhh
〉

=
∑

g,h∈G
(αg∗̇βh)g ∗ h.

——————————————————————————————————————————————–

There are many other structures not listed here. See for example lattices or boolean algebras.
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2. General Constructions

F Quotients, Homomorphic Images, and Substructures

• Def. 2.1: In addition to typifying as we did in the previous section, abstract and explicit algebraic struc-
tures can be listed by presentations: 〈S | R〉 where S is some generating set and R is a set of relations.
Relations are also known as axioms or identities.

• Def. 2.2: When no relations have been given, the structure is typically called a free structure.
Otherwise it is called a Non-free structure.

• Def. 2.3: (Types of Relations)
An n-ary relation is a subset of the cartesian product S × ...× S︸ ︷︷ ︸

n−times

. Particularly, a binary relation on

a set S is a subset R ⊆ S × S. A ternary relation R ⊆ S × S × S, etc.

A binary relation is said to be:
1.) Reflexive if ∀x ∈ S, (x, x) ∈ R,
2.) Symmetric if ∀x, y ∈ S, (x, y) ∈ R↔ (y, x) ∈ R,
3.) Anti-symmetric if ∀x 6= y ∈ S, (x, y) ∈ R→ (y, x) /∈ R, and
4.) Transitive if ∀x, y, z ∈ S, (x, y) and (y, z) ∈ R→ (x, z) ∈ R.

An equivalence relation is one that is reflexive, symmetric, and transitive. A congruence relation is
an equivalence relation that is also compatible with all the operations of the algebraic structure.

A partial order is reflexive, antisymmetric, and transitive, a total order is a partial order under which
every pair of elements are comparable i.e. either (x, y) ∈ R or (y, x) ∈ R.

• Def. 2.4: The Power Set P(S) of a set S is the collection of all subsets of S. A partition of S
is a subset T ⊆P(S) such that:

i.) S =
⋃

A∈T
A and

ii.) ∀A,B ∈ T , A ∩B = ∅ or A = B.

• Def. 2.5: Given a set S and a relation R, a relationary class of an element x ∈ S, which we’ll
call [x] = {y ∈ S | (x, y) ∈ R}. When R is an equivalence relation or congruence relation, [x] becomes an
equivalence class or congruence class respectively.

• Def. 2.6: Given an algebraic structure A and a congruence relation R, the set of all congruence classes
under the relation is called the quotient structure and can be denoted by B = A/R = {[x] | x ∈ A}.
Alternatively, in structures with a notion of “shifting”, A/B denotes the set of all cosets of B (shifted sets).

It is easy to show that the set of equivalence classes forms a partition of the underlying set A ∈ A.
Similarly for congruence classes. [Proof: Definition pushing.]
——————————————————————————————————————————————–

• Def. 2.7: A map between algebraic structures of the same type who’s image is compatible with the
corresponding operations is called a morphism or homomorphism. Structures are homomorphic if
there exists such a map between them. We can create “new” structures out of an existing one via sending
it to a homomorphic image. (This covers group homs, ring homs, field homs, linear maps, etc.)
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• Def. 2.8: Given two algebraic structures of the same type, A and B, we say A is embedded in B if
there exists an injective homomorphism between their universes. We usually denote the map by ϕ : A ↪→ B.

——————————————————————————————————————————————–

• Def. 2.9: Given A = {A, (fi)i∈I , τ} and B = {B, (gj)j∈J , σ}, we say B is a substructure of A and
denote B ≤ A if:

i.) B ⊆ A and (gj)j∈J ⊆ (fi)i∈I ,
ii.) ∀j ∃i such that gj = fi

∣∣
B

, and
iii.) perhaps redundantly, B is closed with respect to (gj)j∈J .

Note: This covers subgroups, subrings, subfields, subspaces, submodules, etc. There are in each case
propositions that make substructure determination easy (e.g. subgroup criterion).

• Def. 2.10: A structure is said to be generated by a set X and specified operations, denoted X ≡ 〈X〉
if each element in X is a “product” of elements in X. By product we mean of course the image of some
operation. Substructures may be generated by subsets of a given universe along with the superstructure’s
operations, usually this is denoted 〈X〉A or just 〈X〉 when context is understood. The set X is called the
generating set. If A is generated by one element, it is called cyclic.

• Def. 2.11: If a substructure B ≤ A can be “shifted” in a superstructure via some operation to gen-
erate a quotient of A, we say B is normal.

Notes: Shifting can take on various meanings depending on the operation used. Traditional examples
include normal subgroups whereby one can shift a normal subgroup N with the group operation g ∗N to
generate a quotient; in ring theory, we use r +N etc. In each case, one must of course check that the ax-
ioms of a congruence relation hold. It is exactly this process of checking that yields criteria for “normality”.

• Def. 2.12: A structure is called simple if it has no proper normal substructures.

• Def. 2.13: We can take all the substructures and display them graphically, ordered vertically by the
relation “is a substructure of”. We connect two such objects by a line if they are comparable. This can
be done similarly with quotients as well. The results are called the substructure lattice and quotient
lattice respectively.

Note: We avoid properly defining a lattice as an algebraic structure, but this can be looked up. Among
other things, these lattices are good for visualizing global properties of a particular algebraic structure as
well as aiding in combinatorial arguments. Here is an example picture for the subgroup lattice of S3.

——————————————————————————————————————————————–
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F “Products” of Structures, Decomposability, and Extended Structures

In addition to quotients, homomorphic images, and substructures, we can combine existing ones to obtain
larger structures of the same type. This concept has two dual notions according to category theory, called
product and coproduct.

Briefly, a category can be thought of as a collection of algebraic structures of the same type together
with all possible morphisms between them. In this language, we refer to “algebraic structures of the same
type” as just “objects” in a particular category.

• Def. 2.14: The product of two objects A and B is a triple (C, p1, p2) where C is another object and
each pi is a projection morphism onto the components A and B respectively. Moreover, we require that
this product is unique up to homomorphism by what’s called a universal property. Dually, a coproduct
is a triple (D, i1, i2) where the ij are injection morphisms from A and B respectively, obeying a similar
universal property.

The following is a prospective list compiled from wikipedia of finite products and coproducts:

Notes: These constructions do not always exist or generalize to the infinite case. It seems as if direct
product and free product are the way to go for all of these constructions, however it is not clear in the
literature, nor is it clear the relationship between say direct sum and tensor product (since they may exist
simultaneously) or whether or not semi-direct or sub-direct products etc can be characterized like this. The
point is, we can sometimes create larger algebraic structures of the same type from 2 or more existing ones.

• Def. 2.15: We call an object decomposable if it can be written as a product or coproduct of two
sub-objects. In the instance of modules for example, a module is decomposable if it can be written as a
direct sum of two sub-modules. We call objects completely reducible if they can be written as finite
products or coproducts of all indecomposable sub-objects.

Lastly, we can make larger structures out of existing ones by appending sets of elements formally and
extending linearly as the following shows:
• Def. 2.16: Let A be given and let x be indeterminate. Denote the extension algebra
A[x] = {

∑
αnx

n | αn ∈ A,n ∈ Z} together with operations from A extended via linearity.

Note: If we let the powers range from 0 to N ∈ Z, we obtain polynomial like structures. If we sub-
stitute x 7→ α for particular α /∈ A then we obtain things similar to complex numbers C = R[i] (II.5).
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3. Morhisms

• Def. 3.1: A map between two algebras of the same type, ϕ : A→ B, is called structure preserving if
all the images of all of the operations are compatible with the operations in the range. That is, given an
n− ary operation and n elements of A, ϕ is structure preserving if ϕ

(
∗ (a1, ..., an)

)
= ∗̃
(
ϕ(a1), ..., ϕ(an)

)
.

Note that this also includes 1-ary operations such as identities: 1(a) := a.

• Def. 3.2: As special cases, we obtain Group, Ring, and Field Homomorphisms and Vector
Space/Module Homomorphisms (R-Linear Maps) and for the case of RG modules, R-Linear
Homomorphisms.

• Def. 3.3: Composites of morphisms are again morphisms. Morphisms on product algebras are known
as multi-homomorphisms.

• Def. 3.4: The canonical map between an algebra and its quotient is called a quotient homomorphism.
We also have injection/embedding homomorphisms as well as projection homomorphisms (from
a product algebra).

• Def. 3.5: We have isomorphisms are bijective homomorphisms; endomorphisms are homomorphisms
between an algebra and itself; an automorphism is a bijective endomorphism.

• Def. 3.6: Let f, g be morphisms such that f : A → B and g : B → A and g ◦ f = IdA. We say f
is a retraction and g is a coretraction or section. These are relative terms and depend what set is
designated as the focal point. For example, vector fields are considered sections of a vector bundle, relative
to the vector bundles projection map that takes a vector at a point to its base point: π : (v, p) → p and
X(p) = (v, p), ∀p,∀v. Here the focal point is the underlying manifold (not the vector bundle). To retract
means more or less to bring back. Section means roughly, cross-section? Lousy terminology...

• Def. 3.7: A monomorphism is a morphism that is left-cancellative, that is: for any two morphisms
g, h : X → A and f : A → B, we have: f ◦ g = f ◦ h =⇒ g = h. Similarly, an epimorphism is
a right-cancellative morphism. Mono is meant to mimick 1-1 and it just so happens that these are
generalizations of 1-1 and onto respectively.

• Def. 3.8: The kernel of a morphism is the domain set that maps to the zero element of the image
(assuming that algebra has one). In the more general case, the kernel is defined as
ker(ϕ) = {a ∈ A | ϕ(a) = ϕ(b)} - that is, the set of congruence classes of elements with the same images.
The cokernel of a morphism ϕ : A→ B is given by: cok(ϕ) = B/Im(ϕ). That is, the set of all cosets of
the image. This definition applies more generally to algebras with a notion of “shifting” as discussed in
Def 2.11 above.
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4. Other Mappings

• Def. 4.1: An action (of a group) on a set is a map θ : G× S → S such that θ
(
g, θ(h, s)

)
= θ(gh, s) and

θ(1, s) = s. One may generalize to any algebraic action by replacing G with A with appropriate com-
patibility conditions. It should be noted that a ring acting on itself generates an R-module [see Section II.7].

• Def. 4.2: Homomorphic images can be used to represent groups with different labeling. For example given
any group G, the linear representation of G is just the image of a homomorphism: ρ : G → GLn(V ),
where GLn(V ) is the group of n× n matrices. If we use elements of G as the basis for an arbitrary vector
space over some field F , the map ρ : G→ GLn(G\F ) provides us with the regular representation. Now
if we use for an arbitrary vector space, ρ : G→ Aut(V ) we get the permutation representation.

In general, a representation of an algebra is a particular homomorphic image of the algebra in a
familiar structure. [For more on representation theory, see Section II.8 and III.1.6]

• Def. 4.3: A category is a pair of classes C = (Ob(C), Hom(C)) respectively, the objects and the
morphisms of C, subject to a set of rules. The rules are for every object there exists an identity morphism
and morphisms are associative in their composition. Functors are bi-maps that take objects and mor-
phisms from one category to another. Natural transformations are morphisms between Functors (we
can consider the category of all Functors, with objects being functors and the morphisms being natural
transformations.

• Def. 4.4: A Galois-connection between sets A and B is a pair (σ, τ) of mappings between power
sets P(A) and P(B),
σ : P(A)→P(B) and τ : P(B)→P(A), such that ∀X,X ′ ⊆ A and ∀Y, Y ′ ⊆ B the following conditions
are satisfied:
1.) X ⊆ X ′ =⇒ σ(X ′) ⊆ (X), and Y ⊆ (Y ′) =⇒ τ(Y ′) ⊆ τ(Y );
2.) X ⊆ τσ(X), and Y ⊆ στ(Y ). [Denecke (pg. 40)].

In other words, a connection is a pair of quasi-inverse set mappings taking subsets to subsets with in-
clusions reversed in each image. Quasi-inverse because it is not necessarily the case that τσ = IdA. See
the traditional Galois connection in Section II.5.
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PART II

Specialized Structures

1. Groups (See: Results)

•Def. 1.1: Given a subsetH ⊆ G, the centralizer ofH inG denotedCG(H) = {g ∈ G | gh = hg, ∀h ∈ H},
that is, the set of elements that commute with every element of H.

• Def. 1.2: The center of a group G is just the subset Z(G) := CG(G).

• Def. 1.3: The normalizer of H ⊆ G is NG(H) = {g ∈ G | gH = Hg}.

• Def. 1.4: A subgroup H ≤ G is normal, denoted H C G if it is invariant under conjugation by all
elements of G. That is, ∀g ∈ G, gH = Hg. In other words G = NG(H). The normal closure of a subset
H is the subgroup given by: 〈〈H〉〉 =

⋃
g∈G

gHg−1.

Z(G) ⊆ CG(H) ⊆ NG(H) ⊆ G.

Note: Zi-Ca-N-Gee is the acronym for the inclusion chain. An easy way to think of the order is in
terms of conjugation and invariance. That is: the normalizer of a subset H is the set of elements in G for
which H is invariant under conjugation, whereas the centralizer of H is the set of elements of G that make
all elements h ∈ H individually invariant under conjugation.

•Def. 1.5: The conjugacy class of an element g ∈ G, denotedC(g) = {h ∈ G | h = kgk−1, for k ∈ G}.

Conjugacy classes show up in a few places, one of which being similar matrices (more on this in Sec-
tion II.6).

• Def. 1.6: Given a set A and a group action ∗ : G×A→ A, the stabilizer of x ∈ A, denoted
Gx = {g ∈ G | gx = x}. Similarly we have GS for S ⊆ A.

We will see later as well (Section II.6) an example of a linear operator action on a vector space that
is an element of the space’s stabilizer. We think from the side of the invariant space getting acted on
usually.

• Def 1.7: Given a set and a group action as before, we have the orbit of x ∈ A, denoted
Ox = G ∗ x = {y ∈ A | y = gx, g ∈ G}.
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2. Rings (See: Results)

The following lists instances of commutative rings with units along with their own additional structures.
The order of entries designates set inclusion as in the figure above. The acronym being FEPUI. Starting
with the most general we have:

• Def 2.1: An Integral Domain is a commutative ring {R,+, ∗, 0, 1} with unit that does not contain
any zero divisors − elements defined by the property that a, b 6= 0 but a ∗ b = 0.

• Def. 2.2: A Unique Factorization Domain (UFD) is an integral domain in which every element
r 6= 0, 1 has the following properties:

1. r can be written as a finite product of prime elements pi ∈ R: r = pk11 · ... · pknn .
2. This decomposition is unique up to ordering of the pi’s.

• Def. 2.3: Given a ring R, an ideal I ⊆ R is a subring {I,+, ∗, 0, 1} which is closed under multipli-
cation in R. That is, ∀r ∈ R, ∀i ∈ I, ri, ir ∈ I.

• Def. 2.4: A Principle Ideal Domain (PID) is an integral domain in which every ideal is princi-
ple (that is, every ideal is generated by a single element).

• Def. 2.5: An integral domain is called a Euclidean Domain (ED) if it possesses a division algo-
rithm. I.e. if there exists a function N : R → Z≥0 with N(0) = 0 such that ∀a, b ∈ R (b 6= 0), ∃q, r ∈ R
such that a = qb+ r, with either r = 0 or N(r) < N(b). N is referred to as a Euclidean function.

• Def. 2.6: A Field is a commutative ring with unit which is closed under element inversion. That is,
∀a,∃a−1.

• Def. 2.7: A Finite Field is a field with finitely many elements.

There are other types of rings existing within these like GCD Domains and Bezout Domains etc. not
listed here.
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3. Subrings and Other Related Notions

• Def. 3.1: Recall that an ideal I ≤ R is simply a subring closed under R-multiplication. We define the
Unit Ideal and the Zero Ideal to be respectively (1) and (0). That is, the principle ideals generated by
elements 1 and 0. Any other ideal is called proper.

• Def. 3.2: A maximal ideal is any proper ideal that is not contained in any other proper ideal. A
prime ideal P 6= AB = {ab|a ∈ A, b ∈ B} for any two proper ideals A,B.

• Def. 3.3: A ring is Noetherian if all ascending chains of ideals stabilize (also known as the ascending
chain condition). In other words, given any chain of left or right ideals:

I1 ⊆ ... ⊆ Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ ... In = In+1 = ... for some n.

Similarly a ring is called Artinian or is said to satisfy the descending chain condition if every de-
scending chain of ideals stabilizes.
——————————————————————————————————————————————–

• Def. 3.4: A unit of a ring is any element that has a “multiplicative” inverse. A pair of elements a, b ∈ R
are called associates if ∃u (unit) such that either au = b or a = bu.

• Def. 3.5: An element of a ring is irreducible if it is non-zero and non-unital and there is no “mul-
tiplicative” factorization into two or more non-unit elements.

• Def. 3.6: An element p of an ring is prime if it is non-zero and non-unital and whenever p|ab either p|a
or p|b.

It should be noted that prime does not mean irreducible in general. If R is an integral domain,
prime implies irreducible. If R is not UFD, it may fail to be the case that irreducible implies prime.

• Def. 3.7: A nilpotent element is one such that there exists n ∈ N with xn = 0. The set of all nilpotents
in a commutative ring forms a subring called the nilradical, denoted N(R).
——————————————————————————————————————————————–

• Def. 3.8: In a ring, an idempotent is an element x such that x2 = x. Two idempotents are orthog-
onal if xy = yx = 0. A primitive idempotent is one that is not a sum of two commuting orthogonal
idempotents. An idempotent is central if it is contained in the center of the ring Z(R) (i.e. the center of
the multiplicative monoid).

• Def. 3.9: A ring satisfying any and hence all the conditions in Wedderburn’s Theorem is called semi-
simple. See Section III results on Module Theory.

Another relevant definition for Wedderburn (FG-module classification theorem) is the definition of a divi-
sion ring.

• Def. 3.10: A division ring is a field with the commutivity of ∗ dropped.
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4. Fields (See: Results)

? Def. 4.1: The three most important classes of fields are as follows:
1.) A number field K is a subfield of C.
2.) A finite field Fq is a field with finitely many elements.
3.) Function fields are extensions of the field F = C(t) of rational functions.

• Def. 4.2: Given a pair of fields F ⊆ K, we say K is a field extension of F or an extension field. We
indicate this relationship by K\F . Some fields may be extensions by finite amounts of elements, while oth-
ers may extend infinitely. In the finite case, we may also refer to the extension field as an adjunction field.

• Def. 4.3: K\F . α ∈ K is algebraic over F if it is the root of a monic polynomial with coef-
ficients in F , say f(x) = xn + an−1x

n−1 + ...+ a0 with ai ∈ F and f(α) = 0. Otherwise, if no such poly
exists, we call α transcendental over F . (Take for example the transcendental element π over Q.)

Adjunction rings for single elements look like this: F [α] = {a0 + a1α + a2α
2 + ... + anα

n | ai ∈ F}.
The adjunction field is then just the field of fractions for F [α]. That is, F (α) is the set of all linear
combinations of elements in F with powers of α (both positive and negative).

• Def. 4.4: Given F (α), we call α the primitive element of the field.

• Def. 4.5: The minimal polynomial for α is the lowest degree monic poly with the above proper-
ties. The degree of α is the degree of its minimal polynomial.

• Def. 4.6: When we regard K\F as a vector space, the degree of K\F is denoted by [K : F ]. A
quadratic field has [K : F ] = 2, a cubic field = 3, etc.

• Def. 4.7: A set of elements to be adjoined to a field are called algebraically dependent if there exists
a polynomial representation of any one in terms of the others. That same set, if independent becomes a
basis for the corresponding vector field. If the basis consists of all transcendental elements and they are
all algebraically independent, the basis is called purely transcendental.

• Def. 4.8 A poly f ∈ F [x] splits completely in a field K if it factors into linear factors in K, that is
in terms of the form (x− α) etc. In this case, K is called a splitting field for f . The minimal extension
field for which this happens is the adjunction field F (α1, ..., αn)[x], where αi’s are the roots of f .

Take for example f(x) = x2 + 1 = (x+ i)(x− i) ∈ R[i][x] ∼= C[x].

• Def. 4.9: A field is algebraically closed if every poly of positive degree with coefficients in F has
a root in F . Ex: C. In other words, the splitting field for all elements in F [x] is F [x].

10



5. Groups, Rings, and Fields in Galois Theory (See: Results)

• Def. 5.1: We define the univariate polynomial ring R[x] as the adjunction ring with formal powers
of x and coefficients in R. The multivariate polynomial ring is similarly defined as R[x1, ..., xn] for all
mixed products of xi’s and coefficients in R. The corresponding fraction fields can be thought of as the
sets of rational functions in xi.

• Def. 5.2: We define the formal (univariate) power series ring as R[[x]] = {
∞∑
i=1

cix
i | ci ∈ R}.

• Def. 5.3: Let K and K ′ be extensions of the same field F . An isomorphism ϕ : K → K ′ such that
ϕ|F = IdF is called an F -isomorphism or an isomorphism of field extensions. If ∃ an F -isomorphism
between K and K ′, we say the two are F -isomorphic.

• Def. 5.4: A permutation σ operates on polys by permuting the variables. In this way, σ also serves
as an automorphism on R[u1, ..., un] ≡ R[u]. In particular, since it restricts to the identity on R we call
it an R-automorphism. We define this for any ring R. Especially when R = F a field.

• Def. 5.5: A poly is symmetric if it is invariant under all such R-automorphisms.

• Def. 5.6: The F -automorphisms of a finite extension K form a group called the Galois group of
K.

Gal(K\F ) = {Aut
(
F (u1, ..., un)

)
, ◦, IdF}.

A finite extension K\F is a Galois extension if the order of its Galois group |G(K\F )| = [K : F ].

• Def. 5.7: Let H be a group of automorphisms of a field K. The fixed field of H, denoted KH , is
the set of elements of K that are fixed by every group element.

KH = {α ∈ K | σ(α) = α, ∀α ∈ H}. **KH ≤ K and H ≤ G(K\KH).

• Def. 5.8: If K is an extension field of F , an intermediate field L is a field such that F ⊆ L ⊆ K. Of
course we include the term proper if it is neither F or K.

We have the following correspondances:

We can see now that the pair {K/F,Gal(K/F )} together with the above correspondence between sub-
structures forms a Galois connection (as in I.4.5).

• Def. 5.9: Let F be a subfield of C. TFAE: and α is called solvable over F if it satisfies either:
∃ a chain of subfields F = F0 ⊆ F1 ⊆ ... ⊆ Fr = K of C such that α ∈ K and

1.) for j = 1, ..., r, Fj = Fj−1(β
1/nj
j ), βj ∈ Fj−1 or

2.) for j = 1, ..., r, Fj+1 is a Galois extension of Fj of prime degree.

• Def. 5.10: A finite group G is solvable if ∃ a sequence 1 C G0 C G1 C ... C Gr = G such that
Gi\Gi−1 is abelian (or cyclic or prime order).
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6. Vector Spaces, Operators, and Forms (See: Results)

• Def. 6.1: Recall that a vector space is an abelian group V = {V,+} equipped with a distributive field
action (scalar multiplication). As a general algebriac structure, a vector space is listed as:
V = {F ∪ V, {+, ∗, 0, 1}, (2, 2, 1, 1)} together with the specifics of the operations such as compatibil-
ity. Or just a set of vectors with scalar multiplication and some axioms defining compatibility (first one is
usually the best).

• Def. 6.2: A linear map or linear transformation T : V → W is a vector space homomorphism.
A linear operator however, is a vector space endomorphism T : V → V . When we say linear we mean
symbolically T (λv +w) = λT (v) + T (w). Scalars may be applied to the second vector but it is redundant
in the definition. To every linear transformation (linear map for short), we have an associated matrix
given with respect to two bases (one for domain (β) and codomain (γ)). We write:

[T ]γβ =

[
[T (β1)]γ · · · [T (βn)]γ

]
= A ∈ GLn(V/F ). The latter notation denotes the coordinate vectors for

the images of the basis vectors from the domain.
If T is complex, the adjoint operator T ∗ : W → V is defined via the adjoint matrix A∗ = At.

• Def. 6.3: Given a vector space V/F . We define a bilinear form to be a map B : V × V → F such that
it is linear in both vector variables. That is:

B(λu+ v, w) = λB(u,w) +B(v, w) and B(u, λv + w) = B(u,w) + λB(v, w).

A Euclidean form is a real bilinear form (i.e. B : V × V → R) that is also symmetric and pos-
itive definite (to be defined). A Euclidean Space is a real vector space equipped with a Euclidean form:
{V/R, BEucl}.

A Hermitian form is a complex bilinear form (B : V × V → C) that is conjugate linear in
the first variable

(
B(λu+ v, w) = λB(u,w) +B(v, w)

)
, linear in the second, and Hermitian symmetric (to

be defined). A Hermitian Space is a complex vector space equipped with a positive definite Hermitian
form: {V/C, BHerm}.

We have the associated matrix to a bilinear form given by the array enumerating pairs of basis
vectors from V . That is, A = (aij)1≤i,j≤n, where aij = B(β1, β2). We define the bilinear form by its action
on vectors using the matrix: B(v, w) = XtAY , where X = [v]β and Y = [w]β.

• Def. 6.4: A bilinear form is said to be positive definite if ∀v, B(v, v) > 0. Similarly, negative
definite if ∀v,B(v, v) < 0. It is positive or negative semi-definite if ∀v,B(v, v) ≥ 0,≤ 0 respectively.
And we say B is indefinite if it is neither positive or negative definite.

• Def. 6.5: A bilinear form is symmetric if ∀v, w,B(v, w) = B(w, v),
skew-symmetric if B(v, w) = −B(w, v),
Hermitian symmetric if B(v, w) = B(w, v), and
Hermitian skew-symmetric if B(v, w) = −B(w, v).

• Def. 6.6: A bilinear form is degenerate if its associated matrix has nontrivial nullspace (kernel).
It is nondegenerate otherwise. A null vector is one such that B(v, v) = 0.
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6. Vector Spaces, Operators, and Forms

• Def. 6.7: Given a Euclidean form or Hermitian form, two vectors are orthogonal if B(v, w) = 0. Given
such a form, we may decompose a vector space into a direct sum of the span of a basis and the span of its
orthogonal complement. This is called the orthogonal direct sum and denoted: V = S⊕S⊥. Recall
that the direct sum is defined as: V ⊕W =

{
v + w | v ∈ V and w ∈ W , but V ∩W = {0}

}
. In the finite

case, direct sum is equivalent to direct product.

? Def. 6.8: The following are properties of matrices and their corresponding bilinear forms. A matrix
is said to be normal if it commutes with its adjoint: AA∗ = A∗A, it is said to be Hermitian if A∗ = A,
symmetric if At = A (for skew’s add a minus sign), unitary if A∗A = I, and orthogonal if AtA = I.

• Def. 6.9: Conjugate matrices are of the form BAB−1 and yield the same information since
det(BAB−1) = det(A). For the special case of bilinear forms, conjugate matrices are of the form BtAB
(that is, BtB = I). Conjugating in either case assumes a basis is already in place that represents the
operator or form as a matrix “A”, if we forget about the original basis, representing the operator or form
in the new basis needs no conjugation. One uses the new basis as the matrix “B” to conjugate. We get the
same results.

• Def. 6.10: Given a linear operator T : V → V , a subspace S ⊆ V is said to be T -invariant if T (S) ⊆ S.
We may take advantage of T -invariant subspaces by using their bases to conjugate and diagonalize or
quasi-diagonalize the operator’s matrix.

A matrix is diagonal if its only nonzero elements are on the diagonal, it is “quasi” if it is diagonal
except for elements on either the super- or sub-diagonal line. A matrix is diagonalizable if it is similar to
a diagonal matrix (think conjugacy class).

A special case of T -invariance is given by eigenvectors T (x) = λx, with corresponding eigenvalue
λ. Clearly S = {µx | µ ∈ F} is invariant. So in terms of diagonalization, if we take V = S ⊕W , and

a basis β = {x,w1, ...wn−1}, the matrix of T is of the form: [T ]ββ =
(λ 0

0 A

)
, for A and 0 blocks. This

diagonalizes the matrix if all λ are distinct. In this event too S = Eλ (see below).
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6. Vector Spaces, Operators, and Forms

• Def. 6.11: Given the matrix of an operator, the characteristic equation is given by det(A− λI) = 0.
The minimal polynomial for a matrix is the one of lowest degree such that p(A) = 0. Note that these
may be different.

The nontrivial solutions to the characteristic equation are the eigenvalues and the corresponding eigen-
vectors are found by solving the system (A−λI)v = 0. The nullspace of the A−λI is the eigenspace. For
repeated eigenvalues, we have generalized eigenspaces found by solving for the nullspaces of (A− λI)k

for progressively larger increments of k. We denote these by Ekλ. A generalized eigenvector is such that
for some k > 0, (A− λI)kx = 0. The smallest such k is called the exponent of x.

The algebraic multiplicity of an eigenvalue is the power of the linear term it corresponds to in
the characteristic equation (such as (x− λ)m). The geometric multiplicity is the dimension of its first
eigenspace E1

λ ≡ Eλ.

We may represent any matrix in Jordan canonical form, that is in terms of ordered Jordan blocks

corresponding to each invariant subspace. They are of the form: (λ),
(λ 0

1 λ

)
,

(λ 0 0
1 λ 0
0 1 λ

)
, etc.

Generalized Eigen-Problem Diagonalization Outline:
We can decompose V = S1⊕ ...⊕Sn, where n is the number of distinct eigenvalues which may or may not
equal dim(V ) and Si is the corresponding total eigenspace for each value. Choosing an arbitrary basis for
each one of the Si’s yields a

block diagonal form: [T ]β =


A

B
. . .

C

.

Consider a generalized e-vector of exponent k and the basis:
βλ = {x, (T − λI)x, ..., (T − λI)k−1x}.

Since (T − λI)i+1 = (T − λI) ∗ (T − λI)i = T (T − λI)i − λI(T − λI)i

We have: T (T − λI)i = (T − λI)i+1 + λ(T − λI)i.

=⇒ Tβλ = {T (T − λI)0x, T (T − λI)1x, ..., T (T − λI)k−1x}
= {(T − λI)x+ λx, (T − λI)2x+ λ(T − λI)x, ..., λ(T − λI)k−1x},

which in terms of the basis βλ is just:

[Tβλ]βλ =

{
λ
1
0
...
0

,


0
λ
1
...
0

, ...,


0
...
0
0
λ


}

.

Now, consider the fact that we have: E1
λ ⊆ E2

λ ⊆ ... ⊆ Ekλ. We may construct a basis concentrically
as follows. Let d1 = dim(E1),

d2 = dim(E2)− dim(E1),
d3 = dim(E3)− dim(E2),
...
dk = dim(Ek)− dim(Ek−1).

Then for each i, we need di amount of elements from the complement Ei\Ei−1. Appending the results
will obtain a basis. One can see that the basis βλ contains a sequence of vectors that descends the chain
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6. Vector Spaces, Operators, and Forms

of inclusions from x ∈ Ek to (T − λI)k−1x ∈ E1. To keep the same sequence formatting, we wish to
start with another linearly independent vector at the top of the list (either in Ek or the next highest) and
then proceed down the chain. This process will terminate and the results will complete the corresponding
Jordan form.

To reiterate: 1.) Compute the dimensions of all the generalized eigenspaces for a given
eigenvalue, 2.) Find the list of codimensions di, 3.) Start at the top (Ek) and find lin-
early independent generators for sequences αλ, βλ, γλ, etc. until the process terminates. The
sequences constitute the bases for each block and appending all such sequences for all such
eigenvalues gives the conjugation matrix that yields the Jordan normal form via J = X−1AX.

As well, it gives the new basis for which J = [T ]ββ.

? Note that we may skip writing down the conjugation matrix or basis if we construct the diagram and
observe: d1 is the number of Jordan blocks, and the size of each block is the height of each column. From
this information, we can just place the eigenvalue on the diagonal the algebraic multiplicity number of
times and then place 1’s below according to the block sizes �.

• Def. 6.12: In relation to solving systems of D.E.’s, a useful tool is the matrix exponential, which

is defined as a matrix series: eA =
∞∑
i=1

1
k!A

k. We won’t digress further here other than saying it is used

in conjunction with diagonalization.
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7. Modules (See: Results)

• Def. 7.1: Recall that a module over a ring is a vector space over a ring instead of a field. Strictly
speaking, a module is an abelian group in {M,+} together with a (left or right) distributive R-action.
The sidedness stems from the ring’s commutivity (or lack thereof). If R is commutative, the two are the
same. From a structural standpoint, a module M =

{
R∪V, {+, ∗, 0}, (2, 2, 1)

}
together with compatibility

conditions and most of the time unit 1.

Note that letting R act on itself defines an R-module since {R,+} is an abelian group and any
left or right action of R on itself is distributive by definition (see Definition I.1.3.). Hence all rings can be
considered modules. Same goes for product rings: Rn = R× ...×R︸ ︷︷ ︸

n−times

. However, not all modules are rings.

• Def. 7.2: A Free module M is characterized by the fact that there exists an R-isomorphism:
ϕ : Rn →M. The terminology stems from the fact that there are no relations defined on the elements in
the domain (hence in the image by isomorphism).

• Def. 7.3: Given a free module homomorphism T : M → N we have: A : Rn → Rm. Where
A = ϕ2 ◦ T ◦ ϕ−1

1 since ϕ1 : Rn →M and ϕ2 : Rm → N. A is a familiar R-matrix associated with T .

Since A(Rn) ≡ ARn ⊆ Rm, we may find the quotient module Rm\ARn (a.k.a. cokernel of A).

• Def. 7.4: Non-free modules are characterized by existence of an isomorphism ϕ : Rm\ARn → M.
Here the elements of the domain are constrained by a relation ((y, 0) ∈ R iff ∃x, such that y = Ax).

In this definition, A, n, and m are variables given by an arbitrary free module hom. If we freeze
m and vary A and n, we may cover the set of all congruence relations defined on Rm. An arbitrary R-
matrix A : Rn → Rm has m rows and n columns and may have rank anywhere between 0 ≤ r ≤ min{m,n}.
Particularly, the image may constitute any subspace of Rm.“Subspace” defines a congruence relation: two
vectors are in the same subspace if they are generated by linear combinations of the same basis elements.
Linear subspaces are the only possible congruences to define on a finite free module. Thus, this character-
ization of non-free modules as the isomorphism class of such quotients is admissible.

However, one may take products of quotient structures such as this as well as direct sums
⊕

i∈I R
mi\AiRni

(off to infinity especially), so this terminology is not all encompassing.

• Def. 7.5: In the above simple case, the matrix A is called the module’s presentation matrix. The
module ARn is called the module of relations. It is generated by a basis for Rn and the matrix elements
via: yj = aijxj . We call these the “relations”. Lastly, one may speak of generators of the module.
These would be elements of Rm for which the R-linear closure is M.

Notes:
1.) To find the presentation matrix, simply take the set of relations bijvj = 0 where vj are the gener-

ators, and extract the matrix B = bij . The presentation matrix is the matrix A = Bt. One can reduce it
from there using a theorem in (Part III) below (Module Theory). Reasoning behind the transpose can be
looked up in Artin’s book or online.

2.) Modules are determined up to isomorphism class (similarity or conjugacy class) of matrix. Thus
many matrices may describe the same module, but the module they describe is unique in the sense that
one matrix doesn’t describe two modules.
——————————————————————————————————————————————–
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7. Modules

Some Related Notions for Modules

• Def. 7.6: A Noetherian module is one such that every ascending chain of submodules stabilizes. Sim-
ilarly for Artinian modules with “descending chains of submodules”.

• Def. 7.7: Recall at the end of Section I.2, we defined decomposable and completely reducible struc-
tures. This covers the cases for modules as well. Simplicity however is given by the absence of proper
ideals (analogous to the case of no proper normal subgroups for simple groups).

• Def. 7.8: Observe the following diagrams:

A module is free if it satisfies the universal property given by the diagram, a module is projective if there
exists such a g making the diagram commute. Likewise for injective modules. Except in the latter two,
these aren’t universal properties. Projective and Injective are dual notions, with free being an instance of
projective.

• Def. 7.9: A flat module over a ring R is an R-module M such that taking the tensor product over
R with M preserves exact sequences.

• Def. 7.10: A torsion-free module is a module over a ring such that 0 is the only element annihi-
lated by a regular element (non zero-divisor) of the ring.

It turns out that we have the following relationship:

Free ⇒ Projective ⇒ Flat ⇒ Torsion-Free
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8. Group Rings and Representation Theory (See: Results)

There is a correspondence between FG-modules and vector spaces with representations afforded to them,
so we will start by defining both of those terms. Then the invariant information about representations is
contained in their characters, so that is next.

• Def. 8.1: Recall from Section I.1, that a group ring or RG-module is the set of all formal linear
combinations {

∑
g∈G

αgg | αg ∈ R} with contrived operations {+, ∗, 〈, 〉} defined to make it work as a tradi-

tional algebra. By FG-module here, we simply mean R is a field F .

• Def. 8.2: As in Section I.4, a linear group representation is just a homomorphism ρ : G → GL(V ).
It has an associated matrix representation given by ψ : G→ GLn(F ), whenever we decide to specify a
basis. The degree of a representation is the dimension of the vector space it maps into. A representation
is called faithful if it is injective.

• Def. 8.3: A subspace W of an FG-module V is called G-invariant or G-stable if ∀g ∈ G,
[ϕ(g)](W ) ⊆W , for some afforded representation ϕ given in the first correspondence:

Correspondences: (See III.1.6)

• Def. 8.3: Two linear representations ϕ : G → GL(V/F ) and ψ : G → GL(W/F ) are equivalent if the
FG-modules V and W affording them are isomorphic (which requires a bijective linear map, compatible
with the group action T ). From this we get the relation: ϕ is equivalent to ψ iff there exists an isomorphism
of FG-modules such that: ϕ = T−1 ◦ ψ ◦ T .

Notes: Once a basis is chosen, this says the matrix representations differ by a change of basis. Since
we are talking about change of basis applied to every representation of group elements in G, this is known
as a simultaneous change of basis. In this event, ϕ and ψ are also said to be intertwined.

• Def. 8.4: The terms of simplicity, reducibility, and decomposability all carry over to represen-
tations from the modules that afford them. That is, a representation ϕ is irreducible iff the FG-module V
affording it is irreducible.

——————————————————————————————————————————————–

• Def. 8.5: The character of a linear representation is a group homomorphism given by the traces of
all the corresponding matrices. We denote this χρ : G→ F such that χρ(g) = tr(ρ(g)). Depending on the
ability to do so, we write out all the images into a vector known as the character vector.

A result about characters is that they are constant on conjugacy classes and so are said to be class
functions, which in the full generality form a normed vector space (in which we find the norm and inner
products between character vectors).

• Def. 8.6: Character tables are made listing components of irreducible characters.
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PART III

Important Theorems
I have named all the Theorems below, these are not their standard names unless indicated in blue. Also,
unless otherwise stated, all maps refer to morphisms.

Group Theory (See: Definitions)

1 • Lagrange’s Theorem: H ≤ G =⇒ |G| = |H| · |G\H|. (Subgroup orders divide group order.)

2 • Sylow Theorem 1: |G| = n = pk ·m =⇒ ∀i ∈ {1, ...k}∃H ≤ G and |H| = pi.

3 • Sylow Thm 2: |G| = pkm, then:
1.) (H ≤ G and |H| = pi) =⇒ ∃x,H = C(x) and
2.) Sylow p-subgroups are all conjugate to eachother.

4 • Sylow Thm 3: |G| = pkm. S = number of sylow p-subgroups, then S|m and S ≡ 1(mod− p).

5 • First Isomorphism Thm: ϕ : G→ G′ (surjective) =⇒ ϕ̃ : G\ker(ϕ)→ G′ is an iso.

6 • Third Iso Thm: N C K C G, then G/H ∼= (G/K)/(K/H) with K/H C G/K.

7 • Correspondence Theorem (4th Iso): If N C G, X is the set of all subgroups containing N and Y
is the set of subgroups of the quotient G\N , then ∃ a bijective map ϕ : X → Y ; ϕ(A) = A\N .

8 • Counting Formulas: Given an action of G onto itself, we have |G| = |Gx| · |Ox|. (Stabilizer/Orbit)
Hence for the left actions on an element or subgroup or conjugation on an element or subgroup:
θL(g, x) = g ∗ x, θ̃L(g,X) = gX, θC(g, x) = gxg−1, and θ̃C(g,X) = gXg−1:

1.) |G| = | < 1 > | · |G| (Uninteresting)
2.) |G| = |X| · |G\X| (Repeat)
3.) |G| = |Z(x)| · |C(x)| (Centralizer/Conjugacy Class)
4.) |G| = |N(X)| · |C(X)| (Normalizer/Conjugacy Class)

9 • Another Counting Formula Thm: Given ϕ : G→ G′, |G| = |kerϕ| · |Imϕ|.

10 • Class Equation: |G| =
∑
x∈G
|C(x)| = |C1|+ ...+ |Ck| for conjugacy classes in G.

11 • Cayley’s Theorem: Every group is iso to a subgroup of a permutation group. That is,
∀G ∃H, G ∼= H and H ≤ Sn for some n ∈ N.

12 • Structure Theorem for Finite Abelian Groups:
Every finitely generated abelian group V ∼= Cd1 ⊕ ...⊕Cdk ⊕L, where Cdi are cyclic subgroups of order di,
L is a free abelian group of order r distinct from the others, and ∀i(di > 1 and di|di+1).

13 • Coprimal Decomposition Thm:
G cyclic and |G| = r · s. Then there exists cyclic groups A and B of respective orders r and s such that
G ∼= A⊕B ↔ gcd(r, s) = 1.

Note that this allows us to further split up the structure theorem into prime order decompositions.
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14 • Equivalent Conditions For Normality:
1.) N C G
2.) NG(N) = G
3.) ∀g ∈ G, gNg−1 ⊆ N (or Ng = gN, ∀g)
4.) {gN} forms a group
5.) N =

⋃
i κi (union of conjugacy classes)

6.) N = kerϕ, ϕ is a homomorphism
7.) N is a Sylow p-subgroup with np = 1.

15 • Smallest Prime Dividing Order Implies Normality of Certain Subgroups:
If |G| <∞ and p is the smallest prime dividing |G|, then any subgroup of index p is normal.

16 • The Flower Inequality: (Very useful in arguing for normality of a sylow subgroup)

Suppose |G| = pαqβ · ... · rγ , then |G| ≥ np(pα − 1) + nq(q
β − 1) + ...+ nr(r

γ − 1) + 1

17 • Permutation Representation on Subgroups:
Suppose H C NG(H) for any H ≤ G. Then: NG(H)/CG(H) ∼= K ≤ Aut(H).

18 • Recognition Theorem For Direct Products of Groups:
Suppose H,K ≤ G both of which are normal and disjoint except for 1. Then HK ∼= H ×K.

19 • Recognition Theorem For Semi-Direct Products of Groups: Suppose H,K ≤ G, disjoint except for
1, but only one of H or K is normal in G, then HK ∼= H oK.
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Important Theorems

Ring Theory (See: Definitions)

1 • Mapping Property of Quotient Rings:
Let ϕ : R→ R′, K = kerϕ, I ≤ R, π : R→ R\I. Then:
1.) I ⊆ K, ∃!ϕ̃ : R\I → R′ such that ϕ̃ ◦ π = ϕ.
2.) ϕ surjective, I = K =⇒ ϕ̃ iso. (First Iso Thm).

2 • Correspondence Thm: ϕ : R→ R′ surjective ring hom, K = kerϕ. Then
{ideals in R containing K} ↔ {ideals of R′}.

3 • Ideal Type Theorem: An ideal I ≤ R is:
1.) maximal iff R\I is a field.
2.) It is prime iff R\I is an integral domain.

4 • Ideals and Fields: The only ideals in a field are (0) and (1).
If a ring has only two ideals, it is a field.

5 • Prime Ideal Thm: Let P be a prime ideal, then:
1.) R\P is an integral domain,
2.) P 6= R and a, b ∈ R such that ab ∈ P , then either a ∈ P or b ∈ P .
3.) P 6= R and A,B ≤ R (ideals), AB ⊆ P , then A or B ⊆ P .

Cor: A maximal ideal of R is prime. (α) is a prime ideal iff α is a prime element.

6 • Chinese Remainder Theorem: Let I1, ..., Ik be the two-sided ideals of a ring R that are pairwise coprime
and I =

⋂k
i=1 Ii. Then we have the isomorphism:

R\I = R\I1 × ...×R\Ik; x(mod I) 7→ (x(mod I1), ..., x(mod Ik)).

7 • Irreducibility vs. Primality Theorem:
1.) In a PID, a,b relatively prime implies there exists r,s such that ra+ sb = 1.
2.) In a PID, an element of R is irreducible iff it is a prime element.
3.) In a PID, maximal ideals of R are the principle ideals generated by irreducible elements.
4.) In an ID, prime elements are irreducible elements.

8 • Chains and Factoring in I.D.’s: Factoring terminates iff all principle ideal inclusion chains are finite.

9 • Ideals of Z: The integers form a PID. Maximal Ideals of Z are principle ideals generated by primes.

10 • Hilbert’s Zero Places Theorem (Ideals of C[xi]):
Maximal Ideals of C[x1, ..., xn] are in bijective correspondence with points of Cn.

11 • Gauss’ Lemma: Product of primitive polys is primitive.

12 • Eisenstein Criterion: Let f(x) = anx
n + ... + a0 be an integer poly and let p be a prime integer

such that:
1.) p - an,
2.) p|ai, ∀i ∈ {1, ..., n− 1}, and
3.) p2 - a0,
then f is irreducible in Q[x].

13 • Ideals of F [[x]]: (ta) are maximal ideals in F [[x]], a is the smallest degree of the nonzero terms.
(p, f) is a maximal ideal in Z[x], for p prime and f is primitive integer poly irreducible mod p.
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Important Theorems

Field/Galois Theory (See: Definitions)

1 •Main Theorem: There is a bijective correspondence between {subgroups of G(K/F )} and {intermediate
fields of K/F} if K is a galois extension of F . Futhermore, H 7→ KH and L 7→ G(K/L) are inverse func-
tions.

2 • Computing the Galois Group: Let K = F (α1, ...αn) be a splitting field for f over F . Suppose g ∈ F [x]
is irreducible over F and that g|f . Then any F -automorphism for K fixes g.

Cor: When computing the Galois group of f , it suffices to consider only automorphisms fixing irre-
ducible polys that divide f .

? Example: f(x) = x5 + x3 − x2 − 1 = (x− i)(x+ i)(x− 1)(x+ 1
2(1−

√
3))(x+ 1

2(1 +
√

3))
Hence irreducible divisors over Q are x2 + 1, x− 1, and x2 + x+ 1. Hence the only automorphisms are:
σ1 : i→ −i, σ2 : 1→ 1, and σ3 :

√
3→ −

√
3. Labeling the roots in order of appearance then and rewriting

the autos: σ1 = (12), σ2 = (3) = (1), and σ3 = (45). So that G(K/F ) = 〈(12), (45)〉 ≤ S5.

3 • Characteristic Properties of Galois Extensions: The following are equivalent:
1.) K/F is a galois extension,
2.) KG = F , and
3.) K is a splitting field over F .

4 • Galois Subgroups Thm 1: K/F is galois, H ≤ G(K/F ). Then KH/F is galois iff H C G(K/F ).

If so, G(KH/F ) ∼= G(K/F )/H (the quotient of G over H).

5 • Galois Subgroups Thm 2 (a.k.a. Fixed Field Thm):

If H finite group of autos for K/F then H = Gal(K/KH) and [K : KH ] = |H|.

6 • Abstract Extensions Thm: Let F be a field, f irreducible in F [x], then K = F [x]\(f) is an exten-
sion of F and x(mod f) is a root of f in K.

7 • Finding the Min Poly for a Transcendental Element: Write out a few powers of α and look for a relation.

8 • Algebraic Extensions of Extensions Thm: Algebraic extensions of algebraic extensions are algebraic.
That is, let F ⊆ K ⊆ L and α algebraic over F and β algebraic over k, then β is algebraic over F .

9 • Algebraic Elements and Iso Extensions:
α, β algebraic over F implies F (α) ∼= F (β) iff α, β have the same minimum poly over F .

10 • Algebraic Closures Thm: Every field has an algebraic closure. If a field has multiple, they are iso.
11 • Splitting Theorem: If K is a splitting field for f and an irreducible g ∈ F [x] has one root in K, then
g splits completely.

12 • Orbit of a Superelement and its Splitting Poly: H ≤ G(K/F ), |H| < ∞. Let β1 ∈ K, {βi}ni=1 its
H-orbit, then:
1.) Irreducible poly for β1 over KH is g(x) = (x− β1) · ... · (x− βn) and
2.) β1 is algebraic over KH and deg(β1) = |H-orbit|.

13 • Multiple Roots and Derivative: f ∈ F [x], α ∈ K/F , then α is a multiple root of f iff α is a root
of both f and its derivative.
14 • Primitive Element Theorem: Every K/F finite with charK = 0 has a primitive element.
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Important Theorems

Vector Space/Operator/Form Theory (See: Definitions)

1 • Spectral Theorem for Normal Operators:
1.) Let T be a normal operator on Hermitian Space. Then ∃ an o.n. basis consisting of e-vectors of T .
2.) Let A be a normal matrix. There is a unitary matrix P such that P ∗AP is diagonal.

2 • Cayley-Hamilton Theorem: Any matrix satisfies its own characteristic poly: pchar(A) = 0.

3 ?Min Poly vs. Char Poly: IfA has a degenerative eigenspace, then pmin(x) 6= pchar(x), but pmin(x)
∣∣pchar(x).

Particularly, linear terms in pmin(x) occur with multiplicity equal to the size of the largest Jordan block
for each particular e-value.

4 • Commuting Matrices Preserve E-spaces: If AB = BA and Av = λv, then:
A(Bv) = (AB)v = (BA)v = B(Av) = B(λv) = λ(Bv). Furthermore, if both A and B are diagonalizable
or quasi-diagonalizable, then they are so simultaneously, since the T invariant decomposition (w.r.t. A) is
preserved by B, it can be further decomposed according to S-invariant subspaces (w.r.t. B), yielding an
appended basis of simultaneous eigenvectors (and vice versa).

5 • Poly Expression for Commuting Matrices: If A diagonalizable and AB = BA, then ∃n such that
B = anA

n + ...+ a1A+ a0.

6 • Transitivity of the Commutator [A,B]: For any three matrices, it is not true in general that if AB = BA
and AC = CA that BC = CB. If however, any one matrix is diagonalizable (i.e. pchar(x) = pmin(x)),
then the transitivity holds.

Proof: Suppose A is diagonalizable and there exists two matrices B and C that commute with A. Then
we can write B = f(A) = anA

n+ ...+a0 for some n. Then BC = (anA
n+ ...+a0)C = C(anA

n+ ...+a0) =
CB, by associativity and linearity.�

7 • Eigenspaces and Adjoint Operators: λ eigen for T =⇒ λ̄ eigen for T ∗, moreover vλ = vλ̄.

8 • Change of Bases for Bilinear Forms: If we change bases for a vector space, the associated matrix to a
bilinear form changes as follows: QtAQ, for some invertible Q. (or Q∗AQ).

Cor1: Matrices that represent the same form are all ones in the orthogonal conjugacy class.
Cor2: A is symmetric and positive definite ↔ A represents dot product ↔ A = P tP .

9 • Form Degeneracy and Invertability of Associated Matrices:
<,> is nondegenerate iff A ∈ GLn(R or C).

10 • Symmetric Forms and Signature Diagonal Matrix Representations:
<,> symmetric =⇒ ∃ an othogonal basis for V . Moreover, <,> Euclidean or Hermitian implies there
exists a basis for which the associated matrix is signature diagonal. That is,
BtAB or B∗AB = diag{Ip,−Im, Oz}, where (p,m, z) is the number of pluses, minuses, and zeros in the
signature.

11 • Decomposition of Vector Spaces by Forms: Let <,> or <,>H , W ≤ V .

1.) <,> nondegenerate on W iff V = W ⊕W⊥.
2.) <,> nondegenerate on V and W =⇒ nondegenerate on W⊥.
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Important Theorems

Module Theory (See: Definitions)

1 • Mapping Property: f : V → V ′ be a module hom whose kernel contains a submodule W . Then

∃!f̃ : V \kerf → V ′ such that f = f̃ ◦ π, where π is a surjective projection hom.

2 • First Isomorphism Thm: If f above is surjective and W = kerf then f̃ is an isomorphism onto V ′.

3 • Correspondence Thm: Let f : V → V ′ be a surjective module hom with kerf = W . Then there
is a bijective correspondence between submodules of V containing W and submodules of V ′. Two corre-
sponding submodules have isomorphic quotients.

4 • Structure Theorem for F.G R-Modules over a P.I.D.:
If R is a P.I.D. and M is finitely generated then ∃(d1), ..., (dk) ≤ R and an integer l such that
M ∼= R\(d1)⊕ ...⊕R\(dk)⊕Rl. (Follows from Structure Theorem for Abelian Groups.)

5 • Diagonalization in Euclidean Domains: Let R be an E.D.. Then there exists products Q and P of ele-
mentary matrices such that anR-matrixA is diagonalizable of the form: A′ = Q−1AP = diag(d1, ..., dk, 0, ..., 0)
with d1|d2|...|dk and all di > 0. Moreover, d1 is the gcd of all elements in A and the product (d1 · ... · di),
i ≤ k is the gcd of the determinants of all (i× i) minors of A.

6 • Condition for Free Submodules over E.D.:
Let R be E.D., M an f.g. free R-module. Suppose N is a finitely generated submodule, then N is free.

7 • On Noetherian Modules:
1.) M noetherian =⇒ every submodule and quotient module are noetherian.
2.) M an f.g. module over noetherian ring implies M is noetherian.
3.) R noetherian implies R[x] is noetherian implies R[x1, ..., xn] is noetherian. (Hilbert Basis Theorem)

8 • Invertability of R-Matrices: Let R 6= {0}. A square R-matrix is invertible iff it has either a left or
right inverse iff detA is a unit of the ring. An invertible R-matrix is square.

9 ? Simplifying Presentation Matrices: If we can reduce A by elementary row operations to the form:

A′ =

(
1

B

)
, then B also presents the module. Moreover if A′ =

(0
...
0

B

)
, then B presents the module.

This is because vi = 0 is useless as a generator in the relation module and the other relations don’t depend
on it and in the second case, the column represents the trivial relation 0 = 0 which is also useless. Other
than that left or right multiplying by any invertible matrix yields a presentation matrix of the same module.

10 • Presentation and Generation Finiteness:
Finitely presented modules are finitely generated. But a finitely generated module is finitely presented
only if it is noetherian.
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Important Theorems

11 • Application to Linear Operators: Given a finite dimensional vector space V/F with linear operator
T : V → V , V becomes an F [t]-module via the action ∗ : F [t] × V → V ; (f(t), v) 7→ [f(T )](v).
Conversely, given an F [t]-module, we may define a linear operator on the vector space via:
T : V → V ; Tv = t · v.

We have the following line by line correspondence:

F [t]-module:
◦ Multiply by t
◦ Free module of rank 1
◦ Submodule
◦ Direct sum of submodules
◦ Cyclic module generated by W

Linear Operator T :
◦ Operation of T
◦ Shift operator
◦ T -invariant subspace
◦ Direct sum of T -invariant subspaces
◦ Subspace spanned by {w, T (w), T 2(w), ...}.

12 • Artin-Wedderburn Theorem (Classification of Semi-Simple Rings):
Let R be a nonzero ring with unit (not necessarily commutative). TFAE:
1.) Every R-module is projective
2.) Every R-module is injective
3.) Every R-module is completely reducible
4.) R considered as a left R-module is completely reducible as:

R = L1 ⊕ ...⊕ Ln where Li = Rei are simple modules formed by idempotents satisfying:
i.) eiej = 0 ∀i 6= j [Orthogonality]
ii.)

∑
ei = 1 [Partition of Unity-esque Property].

5.) As rings, R ∼= R1 × ...×Rr (direct product) of matrix rings over division rings. R = Πn
i=1Mni(∆i).

[ Ri is a two sided ideal of R iso to the ring of all ni × ni-matrices with entries in a division ring ∆i which
up to iso are completely determined by R.]
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Important Theorems

Representation Theory (See: Definitions)

1 • Main Theorem:
1.) The irreducible characters of group G are orthonormal.
2.) Isomorphism classes of irreducible representations correspond to conjugacy classes in the group.
3.) If ρ1, ..., ρr represent the isomorphism classes of irreducible representations of G and χ1, ..., χr their
characters. The dimension di of ρi (or of χi) divides the order |G| of the group, and |G| =

∑
d2
i .

2 • Corollaries of Main Theorem:
Let ρ1, ..., ρr represent iso classes with χi etc. Let ρ be any representation with χ.
1.) χ = n1χ1 + ...+ nrχr.
2.) ρ is iso to

⊕r
i=1 niρi.

3.) Two reps of a finite group are iso iff their characters are equal.

3 • Maschke’s Theorem: Every representation of a finite group G on a nonzero, finite-dimensional complex
vector space is a direct sum of irreducible representations.

4 • Unitary Rep. Decomposition: Every unitary representation ρ : G → GL(V ) on a Hermitian space
is an orthogonal sum of irreducible reps.

Particularly, if ρ is a unitary representation of G on a Hermitian space V , and if W is a G-invariant
subspace. Then W⊥ is also G-invariant. Moreover, ρ is the direct sum of its restrictions to the Hermitian
spaces W and W⊥. These restrictions are unitary representations as well.

5 • Reps. of Finite Groups: G a finite group and χ = tr(ρ(·)).
1.) χ(1) is the dimension of χ since χ(1) := tr(ρ(1)) = tr(In) = n.
2.) The character is constant on conjugacy classes. g′ = hgh−1 =⇒ χ(g′) = χ(g).
3.) gk = 1 =⇒ the roots of the characteristic poly of ρg are powers of the kth root of unitary ζk.
If ρ has dimension d, then χ(g) is the sum of d such powers.
4.) Isomorphic representations of G have the same character.

6 • Reps. of Finite (Abelian) Groups: G a finite abelian group.
1.) Every irreducible character of G is one dimensional. The number of irr. characters equals |G|.
2.) Every matrix representation R of G is diagonalizable.

7 • Schur’s Lemma:
1.) Let ρ and ρ′ be irreducible representations of G on V, V ′ let T : V ′ → V be a G-invariant transforma-
tion. Either T is an isomorphism or T = 0.
2.) Let ρ be an irreducible representation of G on V and let T : V → V be a G-invariant linear operator.
Then T is multiplication by a scalar.

8 • Representations, G-Invariance, and Forms: Let ρ : G → GL(V ) be a rep of a finite group on a vector

space V . Then there exists G-invariant, positive definite hermitian form on V . < v,w >= 1
|G|
∑
g
{gv, gw}.

9 • Correspondence Theorem:

The correspondence is given by defining the representation in terms of the ring action and the ring action
in terms of representation extended via linearity: g ∗ v :=: [ϕ(g)]v
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Selected Examples

1 • Dihedral Group:
The dihedral group is the group of symmetries of a regular polygon (n-gon), which includes rotations and
reflections (wiki). Dn = 〈r, s | rn = 1, s2 = 1, and srs = r−1〉

2 • Primitive Roots of Unity:
The roots of unity are complex nth roots of 1. Recall from complex analysis that this means:

G = {ζkn | ζkn = e
2πk
n
i, k = 0, ..., n − 1}. It is easy to see that this forms an abelian group via the power

addition law. The field extension Q[ζn] is important in Galois theory.

3 • Symmetric Groups (Permutation Groups):

The symmetric groups Sn =
{
σ | σ is a permutation of the elements {1, ..., n}

}
.

We have that |Sn| = n! and any σ can be written in cyclic notation:
where u→ v → u, x→ y → z → x ≡ (xyz) ◦ (uv)

Example: S3 = {(1), (12), (13), (23), (123), (132)} where each respective σ takes the set {1, 2, 3} to



{1, 2, 3}
{2, 1, 3}
{3, 2, 1}
{1, 3, 2}
{2, 3, 1}
{3, 1, 2}

It should be noted that (1) = (k) is the identity map, (mn) is a 2-cycle and (1...n) is an n-cycle.
2-cycles commute with everything. A two cycle and an n-cycle generate the entire group Sn. And each
permutation has a signature “sgn σ”(= 1 or −1) which refers to it being either an even or odd number
of transpositions. The subgroup of all even permutations is called the Alternating Group An.

4 • Cyclic Groups:
These are groups generated by single elements, for example in (Z, ∗), we have < 2 >= { multiples of 2}.
The p-Groups or Sylow groups are prime ordered cyclic groups. The familiar Z\nZ ≡ Zn = {[x]mod−n}
are cyclic if n is prime.

5 • Gauss Integers
The Gauss Integers consist of the set Z[i]. They form a Euclidean domain with respect to the complex
norm and are considered a quadratic number field.

6 • Matrix Groups
The set of n × n matrices with elements in a field form a group under matrix multiplication. We denote
this by the General Linear: GLn(F ). There are many important subgroups of this group. To name a few:
O(n) = {orthogonal matrices}, SO(n) = {orthogonal matrices with unit determinant} (special orthogo-
nal), U(n) = {unitary matrices}, SU(n) = {special unitary}, etc. There are many more.

? ? ?
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