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Introduction

This document aims at dealing with tensor-field equations in the context of differential geometry
and physics. The tensors we deal with are real-valued mappings that are linear in each variable.
The variables can be vectors or dual vectors (or both, depending on the valence). Tensor fields are
the upgraded version to manifolds, whereby the tensor components become dependent on location.
Two tensors are equal if all their components are equal (similar to vector equality).

That being said, there is a lot that goes into these statements formally speaking and as one
will see, the equations that arise are usually some type of differential or integral equation involving
more advanced notions of the ones seen in calculus. Things like arc length, curvature, volume, and
orientation are generalized. Technical tools for manipulating tensors are given and the culminating
topics are Geodesic Equations and Einstein’s Field Equations.

Out of all the texts I’ve come across on the subject, John Lee has the best in my opinion.
William Boothby has a rivaling text I’ve enjoyed as well. Robert Wald’s text covers a lot of
content overlapping with Lee’s Curvature book but with heavy application to Physics. For Complex
Manifolds and Riemann Surfaces, Rick Miranda is my go to. See references for these and more!
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This chapter introduces the main players in differential geometry.

1. Construction of Tensors (On A Vector Space)

Import Linear Algebra. Let V be an n-dimensional vector space over R with basis {∂1, ..., ∂n}.
———————————————————————————————————————————
• Def: We define the dual space, denoted V ∗, to be the set of linear functionals over V . That is,

V ∗ := {ω : V → R | ω is linear}.

We also call the elements ω ∈ V ∗, dual vectors or co-vectors.
———————————————————————————————————————————
[Exercise: Prove V ∗ forms a vector space and show the component functions ∂i : v 7→ vi form a
basis. Note that ∂i(∂j) = δij . The symbol δij is known as the kronecker delta and has value 1 if
indices match and zero otherwise.]

———————————————————————————————————————————
• Def: The double dual space, denoted V ∗∗, is just the dual of the dual of V . That is,

V ∗∗ := {f : V ∗ → R | f is linear}.

———————————————————————————————————————————
[Exercise: Show the map v 7→

(
fv : ω 7→ ω(v)

)
gives a vector space isomorphism between V and

V ∗∗. So that we can identify v and fv and write: v(ω) := ω(v).]

———————————————————————————————————————————
F Def: Let us define the following related vector spaces (for each k, l ∈ N):

T kl (V ) :=

{
ϕ : (V ∗)k × V l → R

∣∣∣∣ ϕ is linear in each variable

}
,

whose elements we call multi-linear functionals or (k.l)-tensors. In this new notation:

T 1
0 (V ) := V and T 0

1 (V ) := V ∗

———————————————————————————————————————————
F Def: Given a pair of tensor valences (k, l) and (m,n), we have a map:

T kl (V )× T mn (V )→ T k+ml+n (V ); (ϕ,ψ) 7→ ϕ⊗ ψ, where[
ϕ⊗ ψ

]
(ω1, ..., ωk+m, v1, ..., vl+n)

:= ϕ(ω1, ..., ωk, v1, ..., vl) · ψ(ωk+1, ...ωk+m, vl+1, ..., vl+n).

We call ⊗ the tensor product of ϕ and ψ.
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Section I.1

We just displayed the tool for constructing mixed tensors on a vector space from the base cases of
(k, l) = (1, 0) and (0, 1), i.e. from vectors and dual vectors! Let’s observe a simple case just for
clarity:

Example: Given a vector v and a covector ω, we define the action of v ⊗ ω on V ∗ × V via:

[v ⊗ ω](α, x) := v(α) · ω(x) ∈ R

where of course α ∈ V ∗ and x ∈ V are arbitrary.

Note: Since multiplication in R is commutative, we may identify rearrangements of the factors
of a tensor and their arguments. So that one may write for example:

ϕ⊗ ψ(v, ω) = ϕ(v)ψ(ω) = ψ(ω)ϕ(v) = ψ ⊗ ϕ(ω, v)

and in general, not necessarily have all the contra- and co- factors grouped together in the display.
———————————————————————————————————————————
• Prop: Given a vector space V with basis {∂1, ..., ∂n} and dual basis {∂1, ..., ∂n}, we have the

basis for T kl (V ) given by:{
(∂i1 ⊗ ...⊗ ∂ik)⊗ (∂j1 ⊗ ...⊗ ∂jl)

∣∣∣∣ ia, jb ∈ {1, ..., n}}
so that dim(T kl (V )) = nk·l.

Proof: [Exercise: Prove the linear independence and spanning properties.]
———————————————————————————————————————————

• Def: With this basis, we can expand a given ϕ ∈ T kl (V ), via:

ϕ = ϕi1...ikj1...jl
∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl ,

(using the Einstein summation convention). The tensor components can be found via:

ϕi1...ikj1...jl
:= ϕ(∂i1, ..., ∂ik, ∂j1, ..., ∂jl)

since as we’ve seen, we just get the kronecker delta a bunch of times going to 1. The collection of
all a tensor’s components forms a multi-dimensional array (think ϕ[i1]...[ik][j1]...[jl] in Java).

———————————————————————————————————————————
Exercise:
a.) Take the standard basis in V = R2 and find the component ϕ1

2, where

ϕ :=

[
1
0

]
⊗ [1 0]−

[
1
0

]
⊗ [0 1]−

[
0
1

]
⊗ [1 0] +

[
0
1

]
⊗ [0 1].

b.) A tensor is called simple if it can be written as a tensor product of vectors and covectors.
Prove the above ϕ is simple using bilinearity. Find a non-simple tensor of the same valence.
———————————————————————————————————————————
Lastly, our notion of tensor as a multi-linear map ϕ : (V ∗)k × V l → R can be abstracted in a few
ways. See the Appendix B for more.
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2. Manifolds and Coordinate Systems

Import Topology. Real manifolds are topological objects, that can be observed locally through
charts into Rn for some fixed dimension n. Due to necessity, they are axiomatized as follows:
———————————————————————————————————————————

• Def: (p.3 [7]) A topological n-manifold is a topological space M = (M,T ⊆ P(M)) with
the following three properties:

(i)M is a Hausdorff space (any two points have distinct neighborhoods around them).

(ii)M has a countable basis for its topology T (i.e. is Second-Countable), and

(iii) At each point p ∈M there exists a neighborhood containing p that is homeomorphic to
a subset of Rn for a fixed n.
———————————————————————————————————————————

As Lee mentions on page 3, some motivations for (i) and (ii) are that we get uniqueness of limits
of convergent sequences and we get the existence of partitions of unity, which among other things
allows us to define derivatives and integrals of differential forms and gives us global constructs such
as a Riemannian metric, built from local definitions. [Exercise: Explore the necessity of (i) and (ii).]

Let’s focus on (iii) next. But first, we reassign the symbols ϕ,ψ, etc. for charts instead of tensors
on a single vector space. We will be upgrading them to capitol greek letters for tensor fields later.
———————————————————————————————————————————

(Continues)
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Section I.2

The following is based off of (p.4-15 [7]).

• Def: Item (iii) says ∀p ∈M, there exists a neighborhood, U ∈ T , containing p and there exists
a homeomorphism ϕ : U → Rn.

We call the pair (U,ϕ) a chart on M. We may refer to U as the coordinate neighbor-
hood and ϕ as the chart map. The image of the chart map, ϕ(U), is called a coordinate
system, since in a basis, β for Rn, we can assign coordinates (x1, ..., xn) to each point, where
∀q ∈ U, xiq := [ϕ(q)]iβ. If it is the case that [ϕ(p)]β = (0, ..., 0), we say the chart is centered
at p and denote it by (U,ϕ)p.

Note that we can post-compose with another homeomorphism, say ρ : Rn → Rn, if we need to
make adjustments (say to the center point or the shape of the image), yielding (U, ρ ◦ ϕ) as a new
chart since composition preserves homeomorphisms.
———————————————————————————————————————————

• Def: If (U,ϕ) is a chart, then taking an open subset V ⊆ U yields a new such pair (V, ϕ|V ),
called a subchart.
———————————————————————————————————————————

• Def: A choice of chart (without further qualification) for every point in the manifold is called
a (topological) atlas. We may denote such an atlas by:

A =
⋃
p∈M

(U,ϕ)p.

If q ∈M is contained in a chart for another point p, we can just use (U,ϕ)p to assign coordinates
around q (using a subchart say). That way, ultimately a (topological) atlas is specified by a cover
ofM, where each open set in the cover is centered arbitrarily.
———————————————————————————————————————————

We now proceed to define different regularity classes of structures on the manifold using atlases.

• Def: Given two charts (U,ϕ) and (V, ψ) with U ∩ V 6= ∅, the fact that the chart maps are
homeomorphisms gives existence of inverses and hence there exist two maps:

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ) and ϕ ◦ ψ−1 : ψ(U ∩ V )→ ϕ(U ∩ V )

called transition maps between the two coordinate systems – both contained in Rn!
———————————————————————————————————————————

• Def: Two charts are said to be Ck-compatible if either U ∩ V = ∅ (they have disjoint do-
mains) or otherwise both transition maps are of regularity class Ck. That is, for example C0 is
continuous, C1 continuously differentiable, Ck is for k-times differentiable with continuous kth

derivative, C∞ is infinitely differentiable (a.k.a. smooth), Cω is real analytic, etc.. in the case of
complex manifolds, their transition maps can be required to be holomorphic (see Ch.1 of [9]). What
is required depends on what you are doing with the manifolds.

(Continues)
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Section I.2

• Def: A collection of charts that coverM and are all mutually Ck-compatible is called a Ck-atlas.
The special case of C∞ is called a smooth atlas.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Special Notes:
1.) We can always append an atlas with another chart that is mutually compatible with all existing
members – to create a new atlas. This leads to the notion of maximal atlases (ones that are closed
under containment of all possible compatible charts). Unfortunately, Zorn’s Lemma is required for
existence of these beasts.
2.) Chart compatibility is not an equivalence relation (transitivity fails), but atlas compatibility is
(two atlases are compatible if all their charts are mutually compatible).
3.) Two atlases need not be compatible (they can be contained in different maximal atlases).

[Exercise: Explore (1) and (2), define a partial order structure on the set of all atlases on M,
look up Zorn’s Lemma and see that it can be applied. Use maximal atlases to prove transitivity of
atlas compatibility. Bonus: Disprove transitivity for chart compatibility, I never got that one!].

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• Def: In light of the special notes above, let us define a Ck-structure as such a maximal atlasA or
equivalence class of atlases [A]. Same goes for a smooth structure. A Ck-manifold or smooth
manifold is a choice of appropriate structure, in addition to the manifold. One can denote this by
(M,A).
———————————————————————————————————————————

Let us assume from now on that a particular smooth structure (M,A) is given. Our main concern
now is to define tensor fields on these manifolds - the regularity of these objects will be determined
by their component functions in coordinates.
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3. Fiber Bundles, Tensor Fields (On Manifolds), and Frames

The figure above gives an intuitive picture of a tensor field. At each point on the manifold, we
have an associated tensor (the collection of which is declared by what’s called a section of a tensor
bundle). We proceed to define these terms and some associated notions. The following is based on
Chapters 3,10,11, and 12 of [7].

———————————————————————————————————————————
We start with the most general notion of a fiber bundle (for reference).

• Def: (p.268 [7]) Let M and F be topological spaces. A fiber bundle over M with model
fiber F is a topological space E, together with a surjective continuous map π : E →M with the
property that for each p ∈M, there exists a neighborhood U of p inM and a homeomorphism
TU : π−1(U)→ U × F , called the local trivialization of E over U , such that the following
diagrams commute for all U :

The space E is called the total space of the bundle, M is its base, and π is its projection.
“Above” each point, we have a topological space Ep := π−1(p) modeled by F .
———————————————————————————————————————————
• Def: (p.249 [7]) A (real) vector bundle of rank k over M is a fiber bundle whose model
fiber is a k-dimensional vector space. That is, the fibers π−1(p) =: Ep are all vector spaces of
dimension k, modeled of course by F = Rk. We also require TU |Ep : Ep → {p} × Rk to be linear
(on top of being a homeomorphism, this makes it a vector space isomorphism – in general there
should be a structure preserving condition like this depending on the structure of F ).
———————————————————————————————————————————

(Continues)
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Section I.3

By Props 10.4 (p.252), 11.9 (p.276), and Exercise 12.18 (p.317) of [7], we have the tangent, cotan-
gent, and tensor bundles (defined below) form vector bundles of ranks n, n, and nk·l respectively.
Let us defer the definition of tangent space at a point, TpM, until Section II.2. For now, think of
it as a space of vectors eminating from the point p on the manifold.

• Def: (p.65) (Tangent Bundles)

TM :=
∐
p∈M

TpM

• Def: (p.276) (Cotangent Bundles)

T ∗M :=
∐
p∈M

(TpM)∗

• Def: (p.316) ((k,l)-Tensor Bundles)

T kl (TM) :=
∐
p∈M

T kl (TpM)

That is, each of these “bundles” are disjoint unions of vector spaces indexed by p ∈M, with the
asterisk denoting the dual as we’ve seen. These bundles also have the structure of manifolds (which
we’ll need to talk about regularity). See the “Vector Bundle Chart Lemma” (p.253).
———————————————————————————————————————————

• Def: (p.255) Given a vector bundle π : E →M, a (local) section of π is (without further
qualification) a continuous map σ : U → E such that π ◦ σ = IdU – that is, just a right inverse
of the projection restricted above U . A (global) section is just one where U =M.

———————————————————————————————————————————
• Def: We define vector fields, covector fields, and tensor fields to be local or global sections
of their associated bundle projections. The sets of all sections of the above bundles form infinite-
dimensional vector spaces over R and modules over C∞(M) [Exercise: Prove this!]. They are
denoted by:

Γ(TM), Γ(T ∗M), and Γ(T kl (TM)).

———————————————————————————————————————————
• Def: (p.257) A (local or global) frame on a manifold is simply a collection of (local or global)
sections, {σ1, ..., σm}, such that in the fiber above each point, Ep, we have a basis given by:
{σ1(p), ..., σm(p)}.
———————————————————————————————————————————
Notes: The σi’s above are abstract symbols to be replaced by the appropriate field symbols. E.g.
{X1, ..., Xn}, {ω1, ..., ωn}, or {1Φ, ...,m Φ}, etc. We usually write tensor fields expanded in a
coordinate frame, {∂1, ..., ∂n}(p), above a neighborhood (that is, locally), by:

Φ = Φi1...ik
j1...jl

(p) · ∂i1(p)⊗ ...⊗ ∂ik(p)⊗ ∂j1(p)⊗ ...⊗ ∂jl(p)

The point can be suppressed when it is clear. These coordinate frames are given by the pushforwards
or pullbacks respectively from the standard frames in the charts. We will cover both of these notions
in Section II.2.
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This chapter lists some things we can do with tensor fields: loosely speaking, we can use maps to
induce fields on other manifolds, extract array data from them, put two fields together in certain
ways, change valence, etc. First things first:

1. Mappings of Manifolds and Coordinate Representations

The reference for this section is Ch.2 [7].

• Def: At the base level, mappings of manifolds F :M→N are just set maps. However,
given the topologies of M and N , we can talk about continuous mappings of manifolds by
pullbacks of open sets being open (the usual topological definition). Note that the manifolds can
have different dimensions.
———————————————————————————————————————————
If we want to talk about further regularity, we need to involve charts to ultimately reference maps
between Rm and Rn and compute partial derivatives locally. Let’s go over how to do this.

The figure above demonstrates the general interaction between a chart (U,ϕ) on M, the image
set F (U), and some nearby charts (Vi, ψi) on N . We have the following choices (for each i):

ψi ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(Vi))→ ψ(F (U) ∩ Vi).

In the event that the image is entirely contained in one chart on N this simplifies to:

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(F (U)).

One can arrange for the desired containment by taking subcharts (U ′ ⊆ U,ϕ|U ′).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• Def: The maps ψi ◦ F ◦ ϕ−1 above are called the coordinate representations of F with
respect to (U,ϕ) and (Vi, ψi). In the literature, one will ambiguously see one such coordinate
representation referred to by “F-hat”:

F̂ = ψi ◦ F ◦ ϕ−1.
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Section II.1

• Def: (p.644 [7]) A real mapG : Rm → Rn is smooth if all of its component functions are infinitely
partially-differentiable. In other words, any multi-indexed partial derivative of any component func-
tion, ∂IG

j , exists and is continuous.

• Def: (p.35 [7]) Let F :M→N be a continuous mapping of manifolds. If there exist smooth

atlases A =
{

(Uα, ϕα)
}
α∈A

and B =
{

(Vβ, ψβ)
}
β∈B

forM and N respectively such that for

each pair (α, β), the coordinate representation ψβ ◦ F ◦ ϕ−1
α is smooth as a real mapping, then

we say F is a smooth mapping of manifolds.

Note: In practice, one may be given atlases to work with that need adjusting (via choosing a partic-
ular Vi as on the previous page, together with taking subcharts of the domain, etc.) in order for the
smoothness to be proven for a particular F .
———————————————————————————————————————————

• Def: Considering R as a smooth manifold with the single global chart (R, IdR), we have a special
case of mappings of manifolds, called functions on manifolds, f :M→ R. The smoothness of
which is characterized by existence of a smooth atlas forM yielding each:

IdR ◦ f ◦ ϕ−1
α = f ◦ ϕ−1

α

as being smooth real maps.
———————————————————————————————————————————

• Def: Some other important special cases being for the tensor fields: Φ :M→ T kl (TM). With
the manifold structure imposed on the tensor bundles (again visit p.253 [7]), we have a
smooth tensor field is just a smooth mapping of manifolds withN = T kl (TM) as defined above.

However, proving smoothness amounts to showing the fields component functions are smooth in ev-
ery chart (Prop 12.19b p.317 [7]). Recall, with the point dependency now and upper case labelling,
tensor fields expanded in a local frame look like:

Φ = Φi1...ik
j1...jl

(p) · ∂i1(p)⊗ ...⊗ ∂ik(p)⊗ ∂j1(p)⊗ ...⊗ ∂jl(p)

so essentially in all charts, show that Φi1...ik
j1...jl

◦ ϕ−1 : ϕ(U) ⊆ Rn → R is a smooth function.
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2. Differentials, Pushforwards, and Pullbacks

In this section, we develop maps related to a given smooth mapping of manifolds. Namely: the
differential at a point, the global differential, and the pushforward and pullback maps which allow
us to in essence move vector fields and covector fields (and by extension, tensor fields) from one
manifold to another. First, we need to properly define the tangent space at a point.
———————————————————————————————————————————
• Def: (p.54 [7]) Suppose we have a function space C∞(M). We define a derivation at p as a
linear map:

Xp : C∞(M)→ R

which satisfies the following “product rule” forall f, g ∈ C∞(M):

Xp(fg) = f(p) ·Xp(g) + g(p) ·Xp(f).

———————————————————————————————————————————
• Def: We call the vector space of all derivations at p, the tangent space at p, and
denote it by TpM. We also call the elements of this space tangent vectors at p.

Notes: These are meant to emulate directional derivative operators in Rn. One can now proceed to
define vector fields etc. using this definition (see Section I.3 again).
———————————————————————————————————————————
Without further ado...

• Def: (p.55 [7]) The differential at p, of a smooth mapping of manifolds F :M→N , is
defined by:

dFp : TpM→ TF (p)N

Xp 7→ dFp(Xp)

where the derivation dFp(Xp) at F (p) is defined to act on f ∈ C∞(N ) by:

[dFp(Xp)](f) := Xp(f ◦ F )

[Exercise: Show dFp(Xp) satisfies C∞(N )-linearity and the product rule.]
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Section II.2

Let’s look at the coordinate representation of the differential (in bases) now. Quick note, we
identify TpRn ∼= Rn, however, we keep track of the point in the notation. So the same basis can be
used for both the coordinate system and the tangent space in a chart (up to the point) as we will see.

Given two charts (U,ϕ)p and (V, ψ)F (p) with F (U) ⊆ V , the coordinate representation for F is:

F̂ := ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(F (U))

for which the differential of F̂ at ϕ(p) is given by:

dF̂ϕ(p) : Tϕ(p)
(
ϕ(U)

)
→ Tψ(F (p))

(
ψ(F (U))

)
.

Then, given the bases { ∂
∂x1 , ...,

∂
∂xm} and { ∂

∂y1
, ..., ∂

∂yn
} for the respective coordinate systems

ϕ(U) and ψ(V ), we have for f ∈ C∞(ψ(F (U))):

[
dF̂ϕ(p)

(
∂
∂xj

∣∣
ϕ(p)

)]
(f) := ∂

∂xi

∣∣
ϕ(p)

(
f ◦ F̂

)
=

n∑
i=1

∂
∂yi

(
f ◦ F̂ (ϕ(p))

)
· ∂
∂xj F̂

i(ϕ(p)) [via Chain Rule (p.647 [7])]

=
∂F̂ i

∂xj

∣∣
ϕ(p)
· ∂
∂yi

∣∣
F̂ (ϕ(p))

(f) [rewriting]

so that abstracting from f , we get:

dF̂ϕ(p)

( ∂

∂xj

∣∣∣∣
ϕ(p)

)
=
∂F̂ i

∂xj

∣∣∣∣
ϕ(p)

·
∂

∂yi

∣∣∣∣
F̂ (ϕ(p))

.

So we conclude that the matrix representation for dF̂ϕ(p) in the two stated bases is exactly the

usual jacobian matrix

(
∂F̂ i

∂xj

)
ij

from calculus. Finally, linearity of matrices gives:

[dF̂ϕ(p)]
β2

β1
[X̂ϕ(p)]β1

=

[
X̂k ∂F̂ 1

∂xk , ... , X̂
k ∂F̂n

∂xk

]t
β2

∣∣∣∣
ϕ(p)

. (II.2.A)

where the sum for k ranges from {1, ...,m} in each component; Also the t is for transpose since
vectors are “column vectors” and covectors are “row vectors”.
———————————————————————————————————————————

(Continues)
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Section II.2

Now for the related maps...

• Def: We define the global differential of a smooth map by

dF : TM→ TN

dF

(
(p,Xp)

)
:=

(
F (p), dFp(Xp)

)
,

using dFp(Xp) from before. Summarizing, this says: dF (X)(f) = X(f ◦ F )

———————————————————————————————————————————

• Def: (p.183 [7]) If a smooth map F :M→N is also invertible, then we may define the
so called pushforward of vector fields, by defining the image section:

F∗ : Γ(TM)→ Γ(TN )

[F∗(X)](q) :=
(
q, dFF−1(q)(XF−1(q))

)
,

where q ∈ N (recall we want a map N → TN ).

Note: We need the inverse to be smooth as well if we want the resulting field in the image to
be smooth (see Prop 8.19 (p.183) [7]). Such bi-C∞ maps are called diffeomorphisms.
———————————————————————————————————————————
• Def: (p.284-285 [7]) For a smooth map (not necessarily diffeo), define the pullback of covector
fields:

F ∗ : Γ(T ∗N )→ Γ(T ∗M)

[F ∗(ω)](p) := (p, ω̃p)

Where for Xp ∈ TpM, ω̃p(Xp) := ωF (p)(dFp(Xp)).

Note: This last line is a point-wise definition of pullback for covectors (similar to the point-wise
differential). We just apply the differential at a point to derivations at a point and then apply the
original covector. More succinctly for fields we write:

F ∗ω(X) = ω(dF (X))

———————————————————————————————————————————
[Exercise: Use equation II.2.A on the previous page to create a coordinate/basis representation of
the pullback.]

[Exercise: For a diffeomorphism, F , we can define a generalized pushforward/pullback map:

Γ(T kl (TM))↔ Γ(T kl (TN ))

using the two we defined above as base cases. It gets ugly, but I’ve done it, try writing it out. Just
pushforward vector factors of the tensors and pullback covector factors! Start by supposing

Φ = Φi1...ik
j1...jl

∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl ∈ Γ(T kl (U)),

then define F∗(Φ) and F ∗(Φ) via...]
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3. Contraction, Outer/Inner Products,

Metrics, and Index Raising/Lowering

This section was motivated by Kay’s text (p.43-44 and p.55 of [6]), but adapted to our notations
and placed in conjunction with Lee [7]. Note that this section has a few nonstandard notations for
the sake of clarity.
———————————————————————————————————————————

• Def: For k, l ≥ 1, we define a map called contraction:

C : Γ(T kl (TM))× {1, ..., k} × {1, ..., l} → Γ(T k−1
l−1 (TM))

C
(
Φ, r, s

)i1...îr...ik
j1...ĵs...jl

:= Φi1...A...ik
j1...A...jl

That is, the components of the contracted tensor are the original tensor’s, summed over the iden-
tified indices. The hat character denotes removal of the indices.
———————————————————————————————————————————
Example: Take Φ = Φi

j∂i ⊗ ∂j. Then C(Φ, 1, 1) = ΦA
A = Φ1

1 + ...+ Φn
n.

———————————————————————————————————————————
• Def: The outer product is just the tensor product as we have already defined:

OP : Γ(T kl (TM))× Γ(T mn (TM))→ Γ(T k+ml+n (TM)),

OP (Φ,Ψ) := Φ⊗Ψ.

The components in a local frame are then:

OP (Φ,Ψ)
i1...ikik+1...ik+m

j1...jljl+1...jl+n
:= Φi1...ik

j1...jl
·Ψik+1...ik+m

jl+1...jl+n

———————————————————————————————————————————
• Def: Given Φ ∈ Γ(T kl (TM)) and Ψ ∈ Γ(T mn (TM)), the inner product of Φ and Ψ over a
co-variant index, s, from Φ and a contra-variant index, r, from Ψ is given by:

IP : Γ(T kl (TM))× {1, ..., l} × Γ(T mn (TM))× {1, ...,m} → Γ(T k+m−1
l+n−1 (TM))

IP (Φ, s,Ψ, r) := C

(
OP (Φ,Ψ), k + r, s

)
The components in a local frame are thus:

IP
(
Φ, s,Ψ, r

)i1...ikik+1...îk+r...ik+m

j1...ĵs...jljl+1...jl+n
:= Φi1...ik

j1...A...jl
·Ψik+1...A...ik+m

jl+1...jl+n

———————————————————————————————————————————
Example: Let ω = ωi∂

i and X = Xj∂j . Then ω ⊗X = ωiX
j∂i ⊗ ∂j and hence contracting

across the only two indices available yields the inner product: ω1X
1 + ...+ ωnX

n.

Note that the blue symbology is the one to pay attention to, the rest is for intuition/coding pur-
poses and is nonstandard. We can summarize by saying inner product is a contraction of the outer
product. One gets a similar definition instead contracting contra- to co- which we will use soon
much later.
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Section II.3

Riemannian and Psuedo-Riemannian Metrics

• Def: (p.327-328 [7]) Given a smooth manifold M, we define a Riemannian metric to be a
tensor field g ∈ Γ(T 0

2 (TM)), that is smooth, symmetric, and positive-definite at each point.

Symmetric means ∀i, j ∈ {1, ..., n} we have gij = gji in any frame. And by positive-definite
at each point, we have:

∀Xp ∈ TpM, gp(Xp, Xp) ≥ 0 with equality iff Xp = 0

———————————————————————————————————————————
• Def: (p.328 [7]) A Riemannian manifold is a pair (M, g), whereM is a smooth manifold and
g is a choice of Riemannian metric onM.

See (Prop. 13.3 (p.329) [7]) for “Existence of Riemannian Metrics” proof, using partitions of unity.
———————————————————————————————————————————
Notes: (p.329-337) Riemannian metrics give a traditional vector space inner product for each tangent
space TpM, so we use the notation:

gp(Xp, Yp) = 〈Xp, Yp〉g.

From this, we may define the norm, |Xp|g :=
√
gp(Xp, Xp) of a tangent vector at a point and

also the angle between two tangent vectors in the usual way: cosθ = 〈Xp,Yp〉
|Xp|·|Yp|

. This gives rise to

orthogonality and orthonormality, which then extends to frames and also gives decompositions
of tangent spaces of Riemannian submanifolds into “tangent” and “normal” directions etc.

Notice that this “metric” is defined over TM and not over M (that is, we don’t measure
distance between points on the manifold). However it can be used to define a traditional (topolog-
ical) metric on the manifold itself [See (p.93-94 [8])].
———————————————————————————————————————————
Alternatively, for physics applications we have:

• Def: (p.343-344 [7]) A psuedo-Riemannian metric on a smooth manifold M is a smooth,
symmetric 2-tensor field (as above) except instead of positive definite at each point, we require
non-degeneracy at each point and also we require this tensor field to have the same signature
everywhere onM. The matrix of g is non-degenerate at p ∈M if

∀Xp 6= 0 ∈ TpM, ∃Yp ∈ TpM, such that gp(Xp, Yp) 6= 0.

The signature of g is defined to be the quantity (P,N), where P and N are (respectively) the
number of positive and negative eigenvalues in the matrix for g.

Note: (p.344 [7]) Not every manifold admits psuedo-Riemannian metrics.
———————————————————————————————————————————
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Section II.3

Raising and Lowering Indices of Tensors

For the following, assume we have either a smooth Riemannian or psuedo-Riemannian manifold
(M, g) and a given local frame {∂1, ..., ∂n} for the tangent bundle. Both positive definite and
non-degenerate matrices can be shown to be invertible [Exercise: Prove this], so g has an invertible
component matrix.
———————————————————————————————————————————
• Def: Define the two tensor fields (sometimes referred to as the metric and conjugate metric):

g = gij∂
i ⊗ ∂j and h := gij∂i ⊗ ∂j

such that gikgkj = δij = δji = gikg
kj . That is, the matrix for h is the inverse for that of g.

———————————————————————————————————————————

We can use the metric and its conjugate to convert tensors to different valences. We do this through

the inner product defined at the beginning of this section (recall the blue symbology).

• Def: Let Φ = Φi1...ik
j1...jl

∂i1 ⊗ ...⊗ ∂jl and suppose we wish to raise the js index or lower the ir

index, respectively yielding valences (k + 1, l− 1) or (k − 1, l + 1). Then, we have the following

inner products listed in components:

IP
(
Φ, s, h, 1

)i1...ikik+1

j1...ĵs...jl
:= Φi1...ik

j1...A...jl
· gAik+1

IP
(
g, 1,Φ, r

)i1...îr...ik
j0j1...jl

:= gAj0 · Φ
i1...A...ik
j1...jl

———————————————————————————————————————————
Notes: This is phrased for coding purposes, but the message should be clear in blue. The index
we wish to affect gets contracted with an opposing index in either the metric or its conjugate and
what’s left is an additional opposing index. To be pedantic, one can reindex the ik+1 or j0 to be
the same as the affected index (so that we really did raise or lower it). Lastly, note that this process
can be repeated to make tensors fully co- or contra-variant!

———————————————————————————————————————————
Example: Let X = Xi∂i. We can turn this to a covector field by lowering the component index
with the metric! After reindexing and using symmetry of g, we write:

Xi := gijX
j

With the new covector field Xi∂
i := gijX

j∂i, we can raise the index back with the conjugate
(reindexing when necessary):

gijXj := gij(gjkX
k) = δikX

k = Xi

For this reason, for raising covector components, we also write:

ωi := gijωj .
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In this chapter we develop the notions of integration and derivation of certain tensor fields. The
natural starting point is a discussion on symmetric tensors. Continuing the discussion on manipu-
lation, we also will see how to symmetrize or skew-symmetrize tensor fields or products thereof.

1. Symmetric and Skew-Symmetric Tensors

(esp. Differential Forms)

Briefly, a symmetry is an operation applied to an object that leaves the state of the object invariant.
In our case, we look at permutations as the “operations” acting on tensor indices/arguments as the
“objects” and the “state” is just the value of the field’s component with the affected index.

Coincidentally, permutations come from groups called the Symmetric Groups Sk. After defin-
ing symmetric tensor fields, skew-symmetric tensor fields are analogously defined and restricting to
purely covariant skew-symmetric tensor fields gives us the differential forms we are after for inte-
gration. Symmetric tensor fields will show up in the next chapter.

This section takes ideas from (Ch.2.15 [2]) and (Ch.12 and 14 [7]) as well as uses [3] for algebra
reference. The subsection directory is given below.
———————————————————————————————————————————
1. On Symmetric Tensors

2. On Skew-Symmetric Tensors

3. On Differential Forms

4. Wedge Product of Elementary Differential Forms

5. Properties of Differential Forms
———————————————————————————————————————————
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Section III.1

1.1 On Symmetric Tensors

• Def: For a given valence (k, l), with k ≥ l, define two linear group actions

Sk × Γ(T kl (TM))→ Γ(T kl (TM))

of Sk on the set Γ(T kl (TM)) by the following:

σ(Φ)i1...ikj1...jl
:= Φi1...ik

σ(j1)...σ(jl)

and
σ(Φ)i1...ikj1...jl

:= Φ
σ(i1)...σ(ik)
j1...jl

for each σ ∈ Sk and Φ ∈ Γ(T kl (TM)). The collection of such component functions ranging over
all indices gives the tensor field defined in the image. This can be written alternatively as:

σ(Φ)(∂i1, ..., ∂ik, ∂j1, ..., ∂jl) := Φ(∂i1, ..., ∂ik, ∂σ(j1), ..., ∂σ(jl))

and
σ(Φ)(∂i1, ..., ∂ik, ∂j1, ..., ∂jl) := Φ(∂σ(i1), ..., ∂σ(ik), ∂j1, ..., ∂jl).

so that permuting component indices is equivalent to permuting variables. For obvious reasons, we
can’t swap co- and contravariant variables (hence the need for two separate actions).
———————————————————————————————————————————

• Def: Given σ ∈ Sk and Φ as before, we say σ is a symmetry of Φ if either:

σ(Φ) = Φ or σ(Φ) = Φ.

We can specify and say a co- or contra-variable symmetry.

———————————————————————————————————————————

Example: A tensor field being symmetric in the first and third (contra-) variables means σ = (1 3)

is a symmetry of Φ or:

Φi3i2i1 = Φi1i2i3

for all values of i1, i2, and i3.
———————————————————————————————————————————
• Def: We say Φ is totally symmetric if it is invariant under the action of all σ ∈ Sk (both up and
down). The set of all symmetric (k, l)-tensor fields is given a special symbol Γ(Σk

l (TM)).
The symmetrization map:

Sym : Γ(T kl (TM))→ Γ(Σk
l (TM))

Sym(Φ) :=
1

k!

( ∑
σ∈Sk

σ(Φ) +σ (Φ)

)
gives

⊕
k,l∈N

Γ(Σk
l (TM)) a graded algebra structure with the bilinear operator,

symmetric product, given by:
ΦΨ := Sym(Φ⊗Ψ).

[Exercise: Prove this algebraic statement.]
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Section III.1

1.2 On Skew-Symmetric Tensors

• Def: (p.315 [7]) A (k, l)-tensor field Φ, with (k ≥ l), is called totally skew-symmetric or
alternating if for all transpositions σ ∈ Sk, we have:

σ(Φ) = −Φ and σ(Φ) = −Φ

respectively. Of course, we only mention co- or contra- if it exhibits one or the other but not both
for all σ. Another way to state the above is that alternating tensors have negatives pop out when
you swap any two variables.
———————————————————————————————————————————

• Def: (p.351-358 [7])
Analogous to before with k ≥ l, the set of all alternating (k, l)-tensor fields is given a special
symbol: Γ(Λk

l (TM)). And via the skew-symmetrization map (a.k.a. alternator map):

Alt : Γ(T kl (TM))→ Γ(Λk
l (TM))

Alt(Φ) :=
1

k!

( ∑
σ∈Sk

(sgn(σ)) ·
(σ

(Φ) +σ (Φ)
))

,

the direct sum
⊕
k,l∈N

Γ(Λk
l (TM) gets the structure of a graded algebra with the bilinear operator,

called the skew-symmetric product:

Alt(Φ⊗Ψ)

Notice the difference here, in the above sum, the terms are weighted by the sign of the permutation
in order to introduce the alternating nature of the tensors components (on top of the symmetriza-
tion).
———————————————————————————————————————————

(Continues)
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Section III.1

1.3 On Differential Forms

We now restrict to valence (k, l) := (0, k) alternating tensor fields. These are the objects we will
use in integration in the next section! So let’s lock down their definitions.
———————————————————————————————————————————
• Def: (p.355-356 [7])
An element of Γ(Λ0

k(TM)) is called a differential form (or more specifically a k-form). Again,
these are just purely covariant tensor fields whose components have a negative pop out when you
swap two indices.

———————————————————————————————————————————
• Def: The algebra

⊕
k∈N

Γ(Λ0
k(TM)) can be equipped with a scaled variant of the skew-symmetric

product called the wedge product, that is convenient for computation (as we’ll see):

Φ ∧Ψ :=
(k1 + k2)!

k1! · k2!
·Alt(Φ⊗Ψ)

= 1
k1!·k2!

( ∑
σ∈Sk1+k2

(sgn(σ)) · σ(Φ⊗Ψ)

)
(F)

for k1-form Φ and k2-form Ψ, the result is a (k1 + k2)-form.
———————————————————————————————————————————

• Def: (p.352 [7]) We introduce some key players in the mathematics of differential forms, called
elementary k-forms. We denote a strictly-ordered multi-index by I := (i1, ..., ik), where
i1 < ... < ik. Then for such an index, using the coordinate frame on a neighborhood, {∂1, ..., ∂n},
and its dual, define the elementary k-form:

∂I(X1, ..., Xk) := det

∂
i1(X1) ... ∂i1(Xk)

...
. . .

...
∂ik(X1) ... ∂ik(Xk)


for vector fields Xi.
———————————————————————————————————————————

Notes: Recall from linear algebra, that for fixed k, the determinant is a real-valued function of
k × k matrices that is linear in each column argument and switches sign when any two columns are
permuted (sounds like a k-form to me!). The catch is that here, the vector fields Xi we are using
as inputs have n components - so there are choices available for ways to crop the matrix [X1...Xk]
to be k × k. These choices give rise to the different elementary k-forms.

Another property we utilize of determinant is that any repeated (or even linearly dependent)
row or columns make the result 0. So for nonzero results, our crops should have unique row com-
ponents and for uniqueness up to sign, we choose the standard ordering of the indices. Hence the

strictly-ordered multi-index. There are

(
n
k

)
such multi-indices.

———————————————————————————————————————————

(Continues)
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Section III.1

1.4 Wedge Product of Elementary Differential Forms

Suppose I = (i1, ..., ik) and J = (ik+1, ..., ik+l) are strictly ordered multi-indices such that ik < ik+1

and k + l ≤ n. Then IJ := (i1, ..., ik+l) is also a strictly ordered multi-index. Thus, we can de-
fine ∂I , ∂J , and ∂IJ as elemenatary k, l, and k + l-forms respectively. WTS that ∂I ∧ ∂J = ∂IJ .

• Proof: (Based off of p.355-356 [7])
We need to show the two tensors have equal components. That is, forall ab ∈ {1, ..., n},

(∂I ∧ ∂J)a1...ak+l
= (∂IJ)a1...ak+l

,

which we obtain by feeding each side the sequences (∂a1, ..., ∂ak+l
). And there are cases for what

these sequences could be.

Case 1: The sequence subscripts match that of IJ .

Then by (F) on the previous page, we obtain:

∂I ∧ ∂J(∂I, ∂J) := 1
k!·l!

( ∑
σ∈Sk+l

(sgnσ) · σ(∂I ⊗ ∂J)

)
(∂i1, ..., ∂ik, ∂ik+1

, ..., ∂ik+l
)

= 1
k!l!

∑
σ∈Sk+l

(sgnσ) · ∂I(∂σ(i1), ..., ∂σ(ik)) · ∂J(∂σ(ik+1), ..., ∂σ(ik+l)) .

Now, we argue that the only terms in the sum that are nonzero are ones in which σ = αβ, for
α ∈ Sk permuting the first k arguments and β ∈ Sl permuting the last l arguments (otherwise
we get columns of zeros in the determinant for missing indices). Together with the multiplicative
property of sgn, we get:

= 1
k!l!

∑
α ∈ Sk
β ∈ Sl

(sgnα)(sgnβ)∂I(∂α(i1), ..., ∂α(ik)) · ∂J(∂β(ik+1), ..., ∂β(ik+1))

=

(
1
k!

∑
α∈Sk

(sgnα) α(∂I)(∂I)

)
·
(

1
l!

∑
β∈Sl

(sgnβ) β(∂J)(∂J)

)
= Alt(∂I)(∂I) ·Alt(∂J)(∂J) = ∂I(∂I) · ∂J(∂J)

by the fact that Alt(Φ) = Φ for alternating tensors [Exercise: Prove this]. And the last term
in the equality is:

= 1 = ∂IJ(∂I, ∂J).

Case 2: Otherwise. Think determinant. Rearrangements of IJ can be reduced to Case 1 canceling
out the signs on each side of the equality attained from permuting back to IJ . Non-rearrangements
of IJ indicate existence of either a repeated index or an index that does not appear in the list IJ ,
in either of these scenarios we get both sides of the equality equal to zero since we’d get respectively:
repeated columns in the determinant or a column of zeros. �
———————————————————————————————————————————
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Section III.1

1.5 Properties of Differential Forms

We conclude this section by listing a few important statements, some coming from (Prop 14.11
on p.356 and Lemma 14.16 from p.361 [7]).
———————————————————————————————————————————

1.) Bases for Λk(TpM):

For each point p ∈M,
{
∂I
∣∣ I a strictly ordered multi-index

}
is a basis for Λk(TpM).

For the proof, see p.353 [7].
———————————————————————————————————————————

2.) Associativity of Wedge Product:
As a consequence of our proof on the previous page, we get associativity of wedge product in
Λk(TpM) by:

(∂I ∧ ∂J) ∧ ∂K = ∂IJ ∧ ∂K = ∂IJK = ∂I ∧ ∂JK = ∂I ∧ (∂J ∧ ∂K).

and using (1) to extend by multi-linearity to arbitrary differential forms.
———————————————————————————————————————————

3.) Decomposition and Alternative Notation:
As a further consequence and induction, we have for a given strictly ordered multi-index, I = (i1, ..., ik),
the elementary k-forms decompose into:

∂I = ∂i1 ∧ ... ∧ ∂ik .

In a chart (U,ϕ) with coordinates ϕ(p) = (x1(p), ..., xn(p)), the coordinate co-vector fields
defined point-wise by the pullback, ∂i|p := ϕ∗(∂i|ϕ(p)), are more commonly denoted dxip := ∂ip,
so we can rewrite the elementary k-forms on a neighborhood as:

∂I = dxi1 ∧ ... ∧ dxik .

Then for an arbitrary k-form defined on (U,ϕ), Φ ∈ Γ(Λk(TU)), we write:

Φ = ΦI∂
I = Φi1...ikdx

i1 ∧ ... ∧ dxik

with the understanding that the sum is taken over the proper multi-indices. If this looks like an
integrand, that’s because it will be soon!
———————————————————————————————————————————

4.) Pullback Formula for Differential Forms:
For a smooth mapping of manifolds F :M→N and Φ = ΦIdy

i1 ∧ ... ∧ dyik defined in a
smooth chart on N , we have:

F ∗(Φ) := (ΦI ◦ F ) · d(yi1 ◦ F ) ∧ ... ∧ d(yik ◦ F ),

which follows easily running out the pullback formula for covariant tensor fields applied to vector
fields onM, together with the determinant definition of elementary k-forms and finally using the
chain rule to absorb the dF ’s [Exercise: Details!].
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2. Integration on Manifolds,

Orientations, and Partitions of Unity

———————————————————————————————————————————

(Figure: Integrating n-Forms Over A Chart)

———————————————————————————————————————————
Import Topology, Real Analysis, and Measure Theory for a deeper understanding of this section
[see overall section citations here]. Since our focus is on the tensor manipulations, we keep it very
superficial in what follows, emulating the line/surface integrals from multi-variable calculus.
———————————————————————————————————————————
• Def: (p.404 [7]) Suppose Φ is a continuous n-form on an oriented manifoldM that is compactly
supported in a single chart (U,ϕ) that is either positively OR negatively oriented. Then we define
the integral of Φ over U to be respectively:�

M
Φ := ±

�
ϕ(U)

(ϕ−1)∗Φ.

That is, we pullback the differential form into the chart and then erasing the wedges, ‘∧’, as they
appear in the differential form, we can apply our knowledge of integrals in Rn.
———————————————————————————————————————————
• Def: (p.405 [7]) Suppose instead that Φ is a continuous n-form whose (compact) support is
contained in a finite covering of charts {(Ui, ϕi)}mi=1 on an oriented manifold M and suppose
{fi}mi=1 is a partition of unity, subordinate to the cover. Define the integral of Φ overM to be:

�
M

Φ :=
m∑
i=1

( �
M
fi · Φ

)
=

m∑
i=1

(
(±)ϕi

�
ϕi(Ui)

(ϕ−1
i )∗(fi · Φ)

)
.

———————————————————————————————————————————
Props 16.4 and 16.5 (pgs. 404-405) say these definitions are independent of the chart chosen
containing the support and independent of the cover and partition of unity chosen.

(Continues)
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Section III.2

We got the main attraction out of the way pretty quickly to get the point across: as long as your
differential form satisfies the hypothesis of the definitions, it can be integrated according to the
formulas given as well as the pullback formula for differential forms from Section III.1.5. This as-
sumes further that you know the orientations of the charts (to get the signs), and that you have a
partition of unity at your disposal – subordinate to a covering by charts of supp(Φ).

Which types of functions or forms other than continuous ones can be integrated and over which
types of domains is a subject we will not touch – see package import at the beginning of the section.
However, we need to go through and at least define the italicized terms above, which we will do next.

One final note, k-forms (for k ∈ {1, ..., n}) can also be integrated, except they will be de-
fined over k-dimensional submanifolds the way we have here.

———————————————————————————————————————————
Subsections:
1. Orientations
2. Support and Partitions of Unity
———————————————————————————————————————————

Fig: Visualizing Orientations (top) and

Elements of Partitions of Unity As Bump Functions (bottom)
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Section III.2

2.1 Orientations

• Def: (p.378 [7]) Given two ordered bases α = {v1, ..., vn} and β = {w1, ..., wn} for a vector
space V , we say the two bases are consistently oriented if the transition matrix between them
has positive determinant.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
We may define a relation on the collection of all bases for V (which yields an equivalence relation):

α ∼ β ↔ det(A) > 0, where A is the transition matrix between α and β.

Given any basis α = {v1, ..., vn}, we denote the two equivalence classes under the consistently
oriented relation by:

[v1, ..., vn]∼ and −[v1, ..., vn]∼

respectively called the positive and negative orientations on V defined by α.
———————————————————————————————————————————

Now apply these definitions to each tangent space, Vp = TpM, at points along the manifold.
———————————————————————————————————————————

• Def: (p.380 [7]) Orientations of local or global frames (for the tangent bundle):

[X1, ..., Xn]∼

are determined pointwise by [X1|p, ..., Xn|p]∼, with a special case being the chart orientation,
determined by the local coordinate frame [∂1, ..., ∂n]∼ (p.381-382 [7]).

We define an orientation ofM to be a continuous choice of positively oriented frame (as opposed
to randomly varying orientations at each point). If such a choice exists, we say M is oriented.
Not all manifolds are orientable (Ex: Mobius Strip (p.393 [7])).

F Note: There are various ways to construct an orientation forM, using differential forms
(orientation forms), atlases, etc. see the reference (p.380+ [7]).

———————————————————————————————————————————

• Def: (p.383 [7]) A mapping of manifolds F :M→N that is a local diffeomorphism is said
to be orientation preserving if at each point, the differential dFp takes oriented bases to ori-
ented bases and orientation reversing if the differential at each point reverses the orientation.

Note: To check if a local diffeo F is orientation preserving, it suffices to check if det(dF̂ ) > 0
in any oriented smooth charts (p.383 Exercise 15.13b [7]).
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Section III.2

2.2 Support and Partitions of Unity

• Def: (p.43/256 [7]) If Φ is any k-form (even 0-form) defined on M, the support of Φ, is the
closure of the set of points where Φ is nonzero (nonvanishing or not equal to the zero k-covector).
That is:

supp(Φ) :=
{
p ∈M

∣∣ Φ(p) 6= 0
}
.

We say Φ is compactly supported if this set is compact. In such a case, any cover of the support
will have a finite subcovering!
———————————————————————————————————————————

•Def: (p.43 [7]) (Specialized) Suppose we have chosen a finite sub-covering, U = {Ui}mi=1 ⊇ supp(Φ),
for the compact support of an n-form on a manifoldM.

We may define a partition of unity, subordinate to U , as an indexed family of continuous
functions, {fi :M→ R}mi=1, such that:

1.) ∀i ∈ {1, ..,m}, supp(fi) ⊆ Ui,

2.) ∀i ∈ {1, ..,m}, ∀p ∈M, 0 ≤ fi(p) ≤ 1, and

3.) ∀p ∈M,
m∑
i=1

fi(p) = 1.

———————————————————————————————————————————

Notes:
a.) These three axioms give us at each point p ∈M that:

Φ(p) =

( m∑
i=1

fi(p)

)
Φ(p) =

m∑
i=1

(fi · Φ)(p),

so that the differential form can be split up into a sum of differential forms:

fi · Φ

where for each i, the supp(fi · Φ) ⊆ supp(fi) ⊆ Ui and hence can be integrated over Ui with
neglible integral on the rest of M. In conclusion, with this tool we can effectively split integrals
over multiple charts into a sum of smaller ones. Assuming partitions of unity exist (see Theorem
2.23 (p.43 [7]) for a constructive proof).

b.) We’ve used partitions of unity to split objects into smaller ones here. They can also be
used to glue together smaller ones making bigger objects [Exercise: Read Lemma 2.26 (p.45 [7])
called the Extension Lemma for Smooth Functions. It uses a more general form of partitions of
unity given on p.43, but is very worthwhile to see!].
———————————————————————————————————————————

This theory extends to manifolds with boundary, manifolds with corners, non-orientable manifolds,
and even in certain cases non-compactly supported k-forms – see literature.
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3. Exterior Derivatives, Stoke’s Theorem, and Cohomology

In this section we aim to define a linear operator on differential forms that generalizes the
differential of a function and encodes some necessary properties to talk about the relationship be-
tween closed and exact forms, De Rham Cohomology, and Stoke’s Theorem. Each of these notions
will be defined as we get to them. We assume throughout that everything in sight is smooth (i.e.
all partials exist etc.)
———————————————————————————————————————————

• Def: Recall the differential of a function (f : Rn → R) is given by (in sum convention):

df := ∂if∂
i

Notice that d thus sends a 0-form to a 1-form (note that both can trivially be considered alternating

tensor fields since there aren’t enough indices to permute).

———————————————————————————————————————————

• Def: (p.363 [7]) We define the kth exterior derivative operators on Rn by:

dk : Γ(Λk(TRn))→ Γ(Λk+1(TRn))

dkΦ := (dΦI) ∧ ∂I

which when written out ignoring the strictly ordered multi-index looks like:

(dkΦ)i1...ikik+1
:= (∂ik+1

Φi1...ik∂
ik+1) ∧ ∂i1...ik.

If we want to adhere to the multi-index convention, some care has to be taken after the fact to
incorporate the new index such that ik < ik+1.
———————————————————————————————————————————

Example: (Switching to traditional notation again ∂i = dxi,Φ = ω)

d1(ωjdx
j) = (dωj) ∧ dxj = (∂iωjdx

i) ∧ dxj = (∂iωj)dx
i ∧ dxj

=
∑
i<j

(∂iωjdx
i ∧ dxj) + 0 +

∑
i>j

(∂iωjdx
i ∧ dxj) [dxi ∧ dxi = 0]

=
∑
i<j

(∂iωjdx
i ∧ dxj)−

∑
j<i

(∂iωjdx
j ∧ dxi) [dxi ∧ dxj = −dxj ∧ dxi]

=
∑
i<j

(∂iωjdx
i ∧ dxj)−

∑
i<j

(∂jωidx
i ∧ dxj) [reindexing]

=
∑
i<j

(∂iωj − ∂jωi)dxij .
———————————————————————————————————————————

(Continues)
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Section III.3

———————————————————————————————————————————
• Prop: (Properties of the Exterior Derivative on Rn, p.364 [7]):

0.) d0f = df [Base Case]

1.) dk is linear over R. [R-Linearity]

2.) ∀ Φ, Ψ (k and l-forms resp.), we have: [“Product” Rule]

dk+l(Φ ∧Ψ) = dkΦ ∧Ψ + (−1)kΦ ∧ dlΨ

3.) dk ◦ dk−1 = 0 [d2 = 0]

4.) F ∗(dkΦ) = dk(F
∗Φ) [Commutes with Pullbacks by Real Maps]

Proof: [Exercise: Hint: Prove first with simple differential forms and invoke linearity. Also, use

the pullback formula for differential forms at the end of Section 1 for (4).]

———————————————————————————————————————————

We wish to upgrade this to the entire manifold using partitions of unity to patch things together!

———————————————————————————————————————————

F Def: (p.365-367) We define the kth exterior derivative operators on M using the defi-

nitions in each chart:

dk : Γ(Λk(TM))→ Γ(Λk+1(TM))

dk :=
∑
α∈A

fα ·
(
ϕ∗α ◦ d̃k ◦ (ϕ−1

α )∗
)

where on the right hand side we have used a partition of unity (in the general sense (p.43 [7]),
{fα}α∈A, subordinate to the atlas {(Uα, ϕα)}α∈A as a cover forM.

In other words, we pullback the k-form into a chart, apply the old dk (tilde added) in Rn, and send
the result back via the pullback the other way (some would say conjugate by ϕ∗α) – patching these
results together with the partition of unity gives us what we want.
———————————————————————————————————————————

Notes: See Thm 14.24 and 14.26 (p.365-367) [7] for well-definedness and uniqueness proof of the
above as well as the extension of (4) in the real definition to arbitrary mappings of manifolds.

We just defined a more or less explicit, coordinate definition of the exterior derivative oper-
ators as they apply to global k-forms. There is a coordinate-invariant formula (Prop 14.32 p.370
[7]) defined in terms of a Lie Bracket, but since we are not covering Lie Theory, we leave that to
the interested reader.
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Stoke’s Theorem and De Rham Cohomology

• Def: (p.25 [7]) Define Hn := {x ∈ Rn | xn ≥ 0}. Then a boundary chart for a manifold is a

chart (U,ϕ : U
∼=−→ Hn) and the boundary of M, is given by:

∂M :=
⋃

bdry charts

ϕ−1(∂Hn),

where of course ∂Hn := {x ∈ Rn | xn = 0}.
———————————————————————————————————————————

• Thm 16.11 (Stoke’s Theorem) (p.411 [7]) LetM be an oriented smooth n-manifold with bound-
ary (having induced orientation), and let Φ be a compactly supported smooth (n− 1)-form on
M. Then: �

M
dn−1Φ =

�
∂M

ι∗∂M(Φ)

where ι∂M : ∂M→M is the inclusion map.

Proof: [Exercise: Read [7]. It breaks down into cases, where M = Hn, Rn,then compact support con-

tained in a single chart, then multiple charts. The bulk of the work is done in the first case and amounts

to running out the definitions and showing both sides are equal to the same expression.]

———————————————————————————————————————————
———————————————————————————————————————————

• Def: (p.441-442 [7]) Let Φ be a smooth k-form.
We say Φ is closed if dkΦ = 0 (i.e. Φ ∈ ker(dk)).
We say Φ is exact if ∃Ψ such that Φ = dk−1Ψ (i.e. Φ ∈ im(dk−1)).

Since we know dk ◦ dk−1 = 0, we have that im(dk−1) ⊆ ker(dk) for all k, so we get a sequence:

Γ(Λ0(TM))
d0−→ ...

dk−1−−→ Γ(Λk(TM))
dk−→ Γ(Λk+1(TM))

dk+1−−→ ...
dn−1−−−→ Γ(Λn(TM))

of vector spaces and linear maps between them. We compute quotients of subspaces in the nodes of
this sequence, called the de Rham cohomology spaces (or de Rham groups when only referring
to the additive structure):

Hk
dR(M) :=

ker(dk)

im(dk−1)
=

{
Φ + im(dk−1)

∣∣∣∣ Φ ∈ ker(dk)
}
.

———————————————————————————————————————————

These sequences of groups, {Hk
dR(M)}nk=0, just described are homotopy-invariants (i.e. homo-

topically equivalent manifolds have isomorphic de Rham groups) (p.443 [7]). Geometrically speak-
ing, they are supposed to “encode the existence of different dimensional holes in the underlying
manifold”. This is an avenue to explore in manifold theory. Other than that, knowing whether a
given k-form is closed or exact, together with Stoke’s Theorem allows you to more easily compute
integrals on manifolds with boundary.
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Chapter Menu:

1.) Connections on Tensor Bundles
1.1.) Coordinate Expressions for Each Action of (k,l)∇
1.2.) Riemannian Connections - Determining Γkij’s with g(X,Y )

2.) Covariant Derivatives, Geodesic Equations, and Parallel Transport
2.1.) Covariant Derivatives
2.2.) Geodesic Equations
2.3.) Parallel Transport

3.) Curvature, Tensor Fields, and Einstein’s Equations
3.1.) Curvature
3.2.) Riemannian Curvature Tensor Fields
3.3.) Einstein’s Field Equations

———————————————————————————————————————————

In this chapter, we aim to develop two systems of differential equations known as Geodesic Equations
and Enstien’s Field Equations. Both use the technology of connection operators (i.e. axiomatized
directional derivatives on tensor fields) and both are specified uniquely in the presence of a Rie-
mannian metric as we will see. We will not be solving these systems in this paper, we leave that
to the interested reader as an [Exercise].

Along the way, we pick up the notions of Parallel Transport and Curvature on Manifolds!

Fig: Intuiting Positive, Nuetral, and Negative Curvature (Top)

and Parallel Transport along A Curve (Bottom)

———————————————————————————————————————————

• Def: To avoid confusing new notation in what follows, let us abbreviate our notation for the
sets of sections of tensor bundles on a given manifold (i.e. sets of tensor fields):

T kl (M) := Γ(T kl (TM))
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1. Connections on Tensor Bundles

• Def: (p.49-54 [8]) A connection on the set of all tensor bundles is a family of maps:

∇ :=

{
(k,l)∇ : T 1

0 (M)× T kl (M)→ T kl (M)

(X,Φ) 7→ (k,l)∇X(Φ)

}
(k,l)

collectively satisfying the axioms to follow. Let N := dim(M) and suppose we have a smooth
global frame {E1, ..., EN} for the tangent bundle, then

∀f ∈ C∞(M),
∀Φ ∈ T kl (M),
∀Ψ ∈ T mn (M),
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.) (0,0)∇Xf := Xf = XiEif [Base Case: Directional Derivative]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1.) (1,0)∇Ei

Ej := ΓkijEk, [Base Case: Linear Connection]

with the component functions Γkij implicitly satisfying (2-4) in the case of (k, l) = (1, 0).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.) (k,l)∇(fX+Y )Φ = f · (k,l)∇XΦ + (k,l)∇Y Φ [C∞(M)-linearity in X]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.) (k,l)∇X(λΦ + Ψ) = λ · (k,l)∇XΦ + (k,l)∇XΨ [R-linearity in Φ]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.) (k+m,l+n)∇X(Φ⊗Ψ) = (k,l)∇X(Φ)⊗Ψ + Φ⊗ (m,n)∇X(Ψ) [“Product Rule”]

=⇒ 4a.) (k,l)∇X(fΦ) = Xf · Φ + f · (k,l)∇XΦ

———————————————————————————————————————————
5.) tr((k,l)∇X(Φ)) = (k,l)∇X(tr(Φ)) [Commutes with Contraction “tr()” a.k.a. “C(Φ, r, s)”

(a.k.a. Characteristic Preservation)]

———————————————————————————————————————————

When the valence is understood, we can drop reference to it to simplify the equations. Exis-
tence of the general case is implied by existence of linear connections (since we build the definition
recursively using the axioms; Existence in the linear case is implied locally in a chart (then globally
with partitions of unity) by correct choices of Γkij ’s forcing (1,0)∇ to satisfy (2), (3), and (4a).

On the next page, we are going to develop explicit coordinate expressions for general con-
nections on each tensor bundle from the axioms. Then we will study Riemannian connections,
which actually uniquely determine Γkij ’s using the metric of (M, g) and some extra conditions.
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Section IV.1

1.1 Coordinate Expressions for Each Action of (k,l)∇
We now suppress the indexing for (k,l)∇ and assume that a given chart (U,ϕ) provides the local
coordinate frame {E1, ..., En}|U := {∂1, ..., ∂n} as we have seen.

Action of ∇ on T 1
0 (M):

∇XY = ∇Xi∂iY
j∂j = Xi(∇∂iY j∂j) [By (2)]

= Xi(∂iY
j∂j + Y j∇∂i∂j) [By (4a)]

= Xi∂iY
j∂j +XiY jΓkij∂k [Distributing and by (1)]

= (XY k +XiY jΓkij)∂k [Reindexing and Factoring]

∴ ∇XY = (XY k +XiY jΓkij)∂k (IV.1.1.A)
———————————————————————————————————————————

Action of ∇ on T 0
1 (M):

This one requires a little trickery. Consider (4) applied to ω ⊗ Y :

∇X(ω ⊗ Y ) = ∇X(ω)⊗ Y + ω ⊗∇XY

Then applying tr() to both sides and using (5) on the left, we get:

∇X(tr(ω ⊗ Y )) = tr(∇X(ω)⊗ Y ) + tr(ω ⊗∇XY )

But for the simple case of contracting a (1, 1) tensor, we have the natural pairing notation:

∇X〈ω, Y 〉 = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉

=⇒ 〈∇Xω, Y 〉 = ∇X〈ω, Y 〉 − 〈ω,∇XY 〉

And notice that on the right hand side, we can apply (0) and what we just found above in red.

〈∇Xω, Y 〉 = X(ωiY
i)− ωk(XY k +XiY jΓkij)

= XωiY
i + ωiXY

i − ωkXY k − ωkXiY jΓkij [Product Rule and Distribution]

= XωkY
k −XiωkΓ

k
ijY

j [Reindexing and Commutativity]

= (Xωk −XiωjΓ
j
ik)Y

k [Reindexing and Factoring]

= 〈(Xωk −XiωjΓ
j
ik)∂

k, Y 〉

∴ ∇Xω = (Xωk −XiωjΓ
j
ik)∂

k (IV.1.1.B)
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Action of ∇ on T kl (M):

Recall we just found the expressions for the action on the base cases for tensors:

∇XY = (XY k +XiY jΓkij)∂k

∇Xω = (Xωk −XiωjΓ
j
ik)∂

k.

In the special cases where Y := ∂ia and ω := ∂jb these reduce to (re-indexing p := k):

∇X∂ia = XiΓpiia∂p (?)

∇X∂jb = −XiΓjbip∂
p (??).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Let’s find the general case for valence (k, l).

∇XΦ = ∇X
(
Φi1...ik
j1...jl

∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl
)

Clearly we need to apply the product rule recursively:

= ∇X(Φi1...ik
j1...jl

)∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl

+Φi1...ik
j1...jl
∇X(∂i1)⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl

+...

+Φi1...ik
j1...jl

∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗∇X(∂jl)

Now, using (0), (?), and (??) we have:

= X(Φi1...ik
j1...jl

)∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl

+Φi1...ik
j1...jl

(XiΓpii1∂p)⊗ ...⊗ ∂ik ⊗ ∂
j1 ⊗ ...⊗ ∂jl

+...

+Φi1...ik
j1...jl

∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ (−XiΓjlip∂
p)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Applying multi-linearity and collapsing the definition of Φ:

= XΦ +

(
Φi1...ik
j1...jl

XiΓpii1

)
∂p ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl

+...−
(

Φi1...ik
j1...jl

XiΓjlip

)
∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂p

(Continues)
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Action of ∇ on T kl (M) (Continued):

So far we have:

∇XΦ = XΦ +

(
Φi1...ik
j1...jl

XiΓpii1

)
∂p ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl

+...−
(

Φi1...ik
j1...jl

XiΓjlip

)
∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂p

but in order to extract the basis elements, we need to reindex. In each term, we can swap p
with the associated ia or jb:

= XΦ +

(
Φp...ik
j1...jl

XiΓi1ip

)
∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl

+...−
(

Φi1...ik
j1...p

XiΓpijl

)
∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl

Finally, factoring out the basis elements we get (afterwards we’ll call ip := p or jp := p)::

∇XΦ =

(
XΦi1...ik

j1...jl
+

k∑
a=1

Φi1...p...ik
j1...jl

XiΓiaip −
l∑

b=1

Φi1...ik
j1...p...jl

XiΓpijb

)
∂i1 ⊗ ...⊗ ∂jl

(IV.1.1.C)
———————————————————————————————————————————

Notes:
i.) These calculations hold equally well in a global frame {E1, ..., En} for the tangent bundle. We
restricted to a chart here for existence proof reasons. Take these and sum over a partition of unity
for the global expression with respect to an atlas. For said frame {Ei} equation, just replace the
appropriate basis elements.

ii.) Again, the Γkij ’s are variables that are assumed to make the linear connection (1,0)∇ sat-
isfy (2), (3), and (4a). So there is a set of connections possible on the set of all tensor bundles for
an arbitrary smooth manifold:

Conn(M) :=

{
∇
∣∣∣∣ ∇ is determined by Γkij ’s which satisfy (2),(3), and (4a)

}
iii.) [Exercise: To complete the existence proof, show the Euclidean Connection, given by
Γkij = 0 for all indices satisies the required axioms.]
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1.2 Riemannian Connections - Determining Γkij’s with g(X,Y )

• Def: (p.65-70 [8]) Given a Riemannian Manifold (M, g), we define a Riemannian Connection,
also denoted ∇, to be a connection on the set of all tensor bundles subject to the following:

6.) ∇X
(
g(Y, Z)

)
= g(∇XY, Z) + g(Y,∇XZ) [Compatibility with g]

7.) ∇XY −∇YX = XY − Y X [Symmetry]

———————————————————————————————————————————
• Prop: (Riemannian Connection Coefficients):

The linear coefficients, Γkij ’s, for a Riemannian connection∇ are uniquely determined by the metric
via the local formulas:

Γkij = 1
2
gkl
(
∂igjl − ∂lgij + ∂jgli

)
(IV.1.2)

where gkl represents the coefficients of the inverse matrix for the metric–recall II.3.2.
———————————————————————————————————————————

• Lemma: ∂i∂j − ∂j∂i = 0 (equality as linear operators on C∞(U)). [Exercise: Prove this.]

———————————————————————————————————————————

Proof: Consider (7) in the special case of X = ∂i , Y = ∂j . We get:

∇∂i∂j −∇∂j∂i = ∂i∂j − ∂j∂i.

=⇒ Γkij∂k − Γkji∂k = (Γkij − Γkji)∂k = 0 [By definition of ∇∂i∂j and the Lemma]

=⇒ Γkij = Γkji for all triples of indices (i, j, k).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Next, let’s derive the coordinate expression of (6) with X = ∂i, Y = ∂j , and Z = ∂k.

∇∂i
(
g(∂j, ∂k)

)
= g(∇∂i∂j, ∂k) + g(∂j,∇∂i∂k)

=⇒ ∂igjk = g(Γlij∂l, ∂k) + g(∂j,Γ
l
ik∂l)

= glkΓ
l
ij + gjlΓ

l
ik

Easy enough, now let’s rewrite this last result 3 times with the indices cyclically permuted:

I.) ∂igjk = glkΓ
l
ij + gjlΓ

l
ik

II.) ∂kgij = gljΓ
l
ki + gilΓ

l
kj

III.) ∂jgki = gliΓ
l
jk + gklΓ

l
ji
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Since we have coefficient symmetry in both the metric and the gammas, the matching colors on the
right hand side are equal. Hence (I-II+III) gives:

∂igjk − ∂kgij + ∂jgki = 2glkΓ
l
ij

from which the result is clear swapping k and l indices and multiplying both sides by 1
2
glk (recall

also g is symmetric). �
———————————————————————————————————————————

To conclude this section, note the following:

F Prop: Every smooth manifold admits a smooth Riemannian metric (induced from the charts
and put together by partition of unity – the result happens to be symmetric and positive-definite).
Hence, by the above work, on any given smooth manifold we have a uniquely determined Rieman-
nian Connection. [See Thm 4.5, p.193 and Thm 3.3, p.314 [11]]. �

Because of this result, in the sequel we will assume the context of a Riemannian metric, g(·, ··)
and a Riemannian connection ∇.
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2. Covariant Derivatives, Geodesic Eq’s, & Parallel Transport

2.1 Covariant Derivatives

• Def: (p.50&54 [8]) Recall for a connection on the set of all tensor bundles, ∇, we have the maps:

(k,l)∇ : T 1
0 (M)× T kl (M)→ T kl (M).

For given fields X and Φ, we call ∇XΦ ∈ T kl (M) the covariant derivative of Φ w.r.t. X.
———————————————————————————————————————————
• Def: If we instead consider a given tensor field Φ with X deferred to be another argument, we
obtain the maps (overloading the symbols):

(k,l)∇ : T kl (M)→ T kl+1(M)[
(k,l)∇(Φ)

]
(ω1, ..., ωk, X1, ..., Xl, Xl+1) :=

[
(k,l)∇Xl+1

Φ

]
(ω1, ..., ωk, X1, ..., Xl)

and we call ∇Φ ∈ T kl+1 the total covariant derivative of Φ. In this case, we have another
notation that we use to denote the coordinate functions of ∇Φ:

(∇Φ)i1...ikj1,...,jl; jl+1
:= (∇Φ)i1...ikj1,...,jljl+1

that is, we indicate the w.r.t. variable separated by a semicolon. In a local frame, this reads:

∇Φ =

(
(∇Φ)i1...ikj1,...,jl; jl+1

)
∂i1 ⊗ ...⊗ ∂jl ⊗ ∂jl+1

———————————————————————————————————————————

(Continues)
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2.2 Geodesic Equations

• Def: (p.55 [8]) We define a curve inM to be a (smooth) map, γ : I →M, with the particular
case of a curve segment with endpoints having I := [0, 1] ⊂ R. Regularity varies among con-
texts.

Notes:
1.) Some would argue that γ : I →M defines a path, whereas the curve is the geometric object
specified by [γ]∼, the equivalence class of paths under re-parameterization.

2.) Given a particular parameterization, γ(t), we have a notion of evolution or trajectory along
the curve by varying t - hence a notion of velocity and acceleration as well.

———————————————————————————————————————————
• Def: (p.56 [8]) For an injective curve γ : I →M, we define its velocity field, to be the push-
forward of the “time” derivative. That is, the vector field γ̇ ∈ T 1

0 (Im(γ)) is given by its action
on f ∈ C∞(Im(γ)):

γ̇γ(t0)(f) :=
[
dγt0(∂t

∣∣
t0

)
]
(f)

at each point t = t0. We use the notation γ̇(t) := γ̇γ(t) as well.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
By the discussion leading up to equation II.2.A, in an image chart (V, ψ), we have a coordinate/basis
representation:

[ ˙̂γ(t)]β2 =

∂tγ̂1(t)
...

∂tγ̂n(t)


where of course γ̂ := ψ ◦ γ : I → Rn. With some notation suppressed:

γ̇(t) = (γ̇1(t), ..., γ̇n(t))t = (∂tγ
k)∂k.

———————————————————————————————————————————

• Def: (p.57-58 [8]) In the presence of a connection, ∇, we define γ’s acceleration field as:

∇γ̇(t)(γ̇(t)) ∈ T 1
0 (Im(γ)),

which by (IV.1.1.A) has local coordinate expression (t suppressed):

∇γ̇(γ̇) = (γ̇γ̇k + γ̇iγ̇jΓkij)∂k

———————————————————————————————————————————
• Def: (p.58 [7]) A geodesic is a curve γ : I →M whose acceleration field is identically zero in
every chart (i.e. ∇γ̇(γ̇) = 0). The above equation says a curve is a geodesic iff:

∀(V, ψ), ∀k, γ̇γ̇k + γ̇iγ̇jΓkij = 0 (IV.2.2)

This system of second order ODE’s (in the variable t) is referred to as the geodesic equations.
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2.3 Parallel Transport

We saw previously how an injective and at least C2(I) curve γ : I →M gives rise to its
velocity γ̇ ∈ T 1

0 (Im(γ)) and acceleration fields ∇γ̇(γ̇) ∈ T 1
0 (Im(γ)), we saw their local coordi-

nate expressions, and we utilized the notion of zero acceleration to get the geodesic equations.
Now, we wish to use this same notion of zero acceleration to express the covariant derivative of

a tensor field Φ along this γ in a different form.

The following generalizes the discussion of (p.59-62 [8]) and instantiates the discussion in [15] to
the case of connections on tensor bundles.
———————————————————————————————————————————
• Def/Prop: Let Φp be a tensor at the point p ∈ Im(γ) for an injective, smooth curve γ : I →M
contained in a single chart (V, ψ) [Exercise: Generalize to multiple charts later]. We can define a
unique new tensor field, Ψ ∈ T kl (Im(γ)), along the curve such that:

∇γ̇(Ψ) = 0 and Ψp := Φp. (IV.2.3)

The solution to the above initial value system of ODE’s defines Ψq at the other points q ∈ Im(γ).

Using this Ψ, and setting p = γ(t0), we can define a family of maps indexed by start and stop
points (t0, t1):

P γ
t0t1

: T kl (Tγ(t0)Im(γ))→ T kl (Tγ(t1)Im(γ))

P γ
t0t1

(
Φγ(t0)

)
:= Ψγ(t1)

which are linear isomorphisms that are dependent on γ (see the ODE’s).
We refer to this family as the parallel translations of Φγ(t0) along γ.

Proof: [Exercise: Find the explicit solution Ψ (hence the explicit form of the P γ
t0t1 ’s).

Use Picard’s Existence Theorem [15].]
———————————————————————————————————————————

• Prop: With the parallel translation family defined above, we have the following correspondence:

(
∇γ̇Φ

)
t0

= lim
h→0

1

h

(
P−1
t0(t0+h)

(Φγ(t0+h))− Φγ(t0)

)
= ∂t

∣∣
t=0

(
P γ
t0(t0+t)

(Φγ(t))
)

Proof: [Exercise: Prove this! Use eq. (IV.1.1.C) and your result from the previous proof.]
———————————————————————————————————————————
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3. Curvature, Tensor Fields, and Einstein’s Equations

The following is based off of [8, 11, 13], see Introduction. Care must be taken when applying to the psuedo-

Riemannian case! (See p.131-132 [8]).

———————————————————————————————————————————

3.1: Curvature

Fig: Visualizing Extrinsic vs. Intrinsic Curvature

of Curves Embedded in Riemannian Submanifolds

———————————————————————————————————————————
Let’s begin with defining a Riemannian submanifold.

• Def: (p.333 [7]) Let (Σ, g̃) and (M, g) be Riemannian manifolds. If there exists a smooth
immersion or embedding ι : Σ→M, that is also an isometry (i.e. ι∗g = g̃), then we say Σ is a
Riemannian submanifold ofM.

———————————————————————————————————————————
• Def: By way of the differential of the “inclusion” map dι : TΣ→ TM, we get an orthogonal
complement decomposition of the tangent bundle over Im(ι) = ι(Σ):

T (ι(Σ)) = dι(TΣ)⊕
(
dι(TΣ)

)⊥
. (F)

where, we define the orthogonal complement projection as usual:

V ⊥ :=
{
w ∈W

∣∣ 〈w, v〉g = 0, ∀v ∈ V
}
.

The decomposition given above can be loosely referred to as the tangent-normal decomposition.
———————————————————————————————————————————
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Section IV.3

Considering (F) again, we get an associated splitting of the sections into tangent and normal
parts as well, giving rise to the definition of normal vector fields, N , as sections of the orthogonal
complement of the tangent bundle. Depending on the “inclusion” map (i.e. depending on the rank
of its differential), we define the codimension of Σ ⊆M to be the quantity:

codim(Σ) := dim
(
Tp(ι(Σ))

)
− dim

(
dι(TpΣ)

)
= dim

(
(dι(TpΣ))⊥

)
at any point p ∈M since vector bundles have consistent fibral dimension at each point.
———————————————————————————————————————————

Now, consider a given Riemannian submanifold (Σ, g̃) ⊆ (M, g). As independent Riemannian

manifolds, they both have their own linear connections (respectively: ∇̃ and ∇) defined by their
metrics g̃ and g [Recall formula (IV.1.2)].

Decomposing the image of the ambient connection ∇XY over ι(Σ), we get:

∇XY = (∇XY )> + (∇XY )⊥. (FF)

It can be shown by a uniqueness argument that over ι(Σ), (∇XY )> = ∇̃XY .

[Exercise: Prove this! See (p.135 [8])].

———————————————————————————————————————————
• Def: (p.134 [8]) We rename the normal projection of the image of the ambient connection restricted
to ι(Σ):

II(X,Y ) := (∇XY )⊥

and call it the Second Fundamental Form. With (FF) and the last exercise, we may write:

II(X,Y ) := ∇XY − ∇̃XY

meaning the second fundamental form measures the difference between the images of the ambient

and induced connections.

———————————————————————————————————————————

• Def: (p.137 [8]) Given a Riemanian submanifold (Σ, g̃) ⊆ (M, g), we define the

(extrinsic) curvature of an embedded curve γ : I → Σ as the magnitude of the g-acceleration

and the (intrinsic) curvature of γ : I → Σ as the magnitude of the g̃-acceleration

(in both cases with γ parameterized by arc-length s).

Respectively listed in symbols, this is just:

κext(s) :=

∣∣∣∣∇γ̇(s)γ̇(s)

∣∣∣∣
g

and κint(s) :=

∣∣∣∣∇̃γ̇(s)γ̇(s)

∣∣∣∣
g̃

———————————————————————————————————————————

Thus, the second fundamental form can be used to analyze the difference in curvatures for γ.
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3.2 Riemannian Curvature Tensor Fields

In the last section, we did a lot of work characterizing intrinsic and extrinsic curvature of embedded
curves in Riemannian submanifolds. We don’t always have an ambient manifold to work with and
so are stuck with the intrinsic definition in the general case. So we aren’t concerned apriori with
the second fundamental form.

However, we want to define a curvature operator using ∇, that is not dependent on any one
particular curve γ, but rather encodes the information for all curves into the tangent spaces TpM
at each point (or better yet, into the sections of the tangent bundles T 1

0 (M)).

Fig: Brainstorming

Now, we have ∇XY at our disposal and we want to characterize curvature axiomatically in terms

of these symbols. The following is based on (p.115-117 [8]).

———————————————————————————————————————————

• Def: (The Flatness Criterion): We say a manifold is flat if its connection operator satisfies

the following forall X,Y, Z ∈ T 1
0 (M):

∇X(∇YZ)−∇Y (∇XZ) = ∇[X,Y ](Z)

where [X,Y ] := XY − Y X.
———————————————————————————————————————————

Notes: This definition was motivated from the Euclidean connection, ∇XY := XY , which
obviously satisfies the flatness criterion. Writing out the coordinate expressions for each side, one
will see that this equality is wildly not held in general. However, any manifold isometric to Eu-
clidean space will satisfy this equation [Exercise: Prove this!] and so we use it to define:
———————————————————————————————————————————

• Def: (p.117 [8]) The Riemannian Curvature Endomorphism, which measures the deviation
of the flatness criterion to be held, is given by:

R(#1,#2)#3 : T 1
0 (M)× T 1

0 (M)× T 1
0 (M)→ T 1

0 (M)

R(X,Y )Z :=
[
∇X∇Y −∇Y∇X −∇[X,Y ]

]
(Z)

———————————————————————————————————————————
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The remainder of this subsection is dedicated to creating a tensor field out of the Riemannian
Curvature Endomorphism defined above, providing its component functions in a local frame, and
listing a few of its properties.

———————————————————————————————————————————

F Def: (p.118 [8]) The Riemannian Curvature Tensor Field is created from the endomor-
phism by composing with the metric (as we have done before in Section II.3 raising and lowering
indices):

R(X,Y, Z,W ) := g(R(X,Y )Z,W )

Rewriting the definition, we’ve obtained a map:

R : T 1
0 (M)4 → C∞(M)

R(X,Y, Z,W ) := g(
[
∇X∇Y −∇Y∇X −∇[X,Y ]

]
(Z),W )

which is multilinear over C∞(M) in each field variable [Exercise: Prove this!], so it defines a
valence (0, 4) tensor field.
———————————————————————————————————————————

F Prop: (Coordinate Expression for R(X,Y, Z,W )):

In the standard frame for a chart, the Riemannian Curvature Tensor is given by:

R = Rijkl∂
i ⊗ ∂j ⊗ ∂k ⊗ ∂l

where Rijkl := R(∂i, ∂j, ∂k, ∂l) = gml

(
∂iΓ

m
jk − ∂jΓmik + ΓajkΓ

m
ia − ΓaikΓ

m
ja

)
.

Proof: [Exercise: Easy! Go compute. Use ∇∂a∂b = Γcab∂c and connection axioms.] �
———————————————————————————————————————————

• Prop: (Properties of R(X,Y, Z,W )):

(p.122 [8]) The Riemann curvature tensor field satisfies the following component equations:
1.) Rijkl = −Rjikl

2.) Rijkl = −Rijlk

3.) Rijkl = Rklij

4.) Rijkl +Rjkil +Rkijl = 0

Proof: [Exercise: Use the above proposition.] �
———————————————————————————————————————————

• Def: (Contracted Forms of R(X,Y, Z,W )):
(p.124 [8]) The Ricci Curvature Tensor Field is given by contracting the Riemannian Curvature
Tensor on its first and last indices. The Scalar Curvature is the subsequent contraction of the
Ricci Curvature on its only two indices.
———————————————————————————————————————————
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3.3: Einstein’s Field Equations

• Def: Although Lee does discuss this topic (see p.125-126 [8]), we switch texts now to Wald’s text
on General Relativity (p.72-73 [14]), wherein it is stated that:

“The entire content of general relativity may be summarized as follows: Spacetime is a manifold
M on which there is defined a Lorentz metric gab. The curvature of gab is related to the matter
distribution in spacetime by Einstein’s equation...”

Rab − 1
2
R · gab = 8π · Tab(gcd) (IV.3.3.A)

where Rab and R in his notation stand for the Ricci and Scalar Curvatures defined above and
Tab is the Stress tensor.

———————————————————————————————————————————

Notes: On (p.73 [14]), the author makes two main points concerning these equations, which are
of interest to us immediately:

1.) “Einstein’s equation is equivalent to a coupled system of nonlinear, second-order partial differ-
ential equations for the metric components gµν . For a metric of Lorentz signature, these equations
have a hyperbolic (i.e., wave equation) character...” [Exercise: Prove this!].

2.) “Until gab is known, we do not know how to physically interpret Tab... thus in general relativity,
one must solve simultaneously for the spacetime metric and the matter distribution.”

For solution methods to this system, see Ch.7 [14]... (really the entirety of his text is worth
reading as a continuation). I leave you with a fully written out version of the above equations in a
chart, with the Christoffel symbols replaced by (IV.1.2) - which doesn’t depend on positive definite
vs. nondegenerate so psuedo-Riemannian metrics like the Lorentz metric still give the same symbols
by virtue of the symmetry and compatibility conditions.

(Continues)
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Einstein’s Equations (In Coordinates):

Let’s summarize what we have in a chart (U,ϕ), with local frame ∂i := (ϕ−1)∗(
∂
∂xi ):

1.) Rjk − 1
2
Rgjk = 8πTjk [Master Equation (IV.3.3.A)]

2.) Rijkl := gml

(
∂iΓ

m
jk − ∂jΓmik + ΓajkΓ

m
ia − ΓaikΓ

m
ja

)
[Riemannian Curvature Tensor Coeff.]

3.) Rjk = ∂iΓ
i
jk − ∂jΓiik + ΓajkΓ

i
ia − ΓaikΓ

i
ja [Ricci Tensor: Rjk := gliRijkl]

4.) R = gkj
(
∂iΓ

i
jk − ∂jΓiik + ΓajkΓ

i
ia − ΓaikΓ

i
ja

)
[Scalar Curvature: R := gkjRjk]

5.) Γcab = 1
2
gcd
(
∂agbd − ∂dgab + ∂bgda

)
[(IV.1.2)]

———————————————————————————————————————————

Now, if we carefully consider the indices of each of the Γcab’s appearing in (3) and (4), we may
substitute (5) into (3) and (4), subsequently substituting those into the master equation (1). After
accomplishing this, we will have the explicit system in terms of only the metric and stress coeffi-
cients. The results are provided for this calculation below:{[
∂i[

1
2
gil(∂jgkl − ∂lgjk + ∂kglj)]

−∂j[12g
il(∂igkl − ∂lgik + ∂kgli)]

+[1
2
gml(∂jgkl − ∂lgjk + ∂kglj)][

1
2
gil(∂igml − ∂lgim + ∂mgli)]

−[1
2
gml(∂igkl − ∂lgik + ∂kgli)][

1
2
gil(∂jgml − ∂lgjm + ∂mglj)]

]
−1

2
gkj
[
∂i[

1
2
gil(∂jgkl − ∂lgjk + ∂kglj)]

−∂j[12g
il(∂igkl − ∂lgik + ∂kgli)]

+[1
2
gml(∂jgkl − ∂lgjk + ∂kglj)][

1
2
gil(∂igml − ∂lgim + ∂mgli)]

−[1
2
gml(∂igkl − ∂lgik + ∂kgli)][

1
2
gil(∂jgml − ∂lgjm + ∂mglj)]

]
gjk

= 8πTjk(g11, ..., gnn)

}
j,k∈{1,...,n}

(IV.3.3.B)
———————————————————————————————————————————

[6:22 pm GMT-8, 01.05.2021. KTS]
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Appendix A. Notation Summary

Most of the time, we will be writing basis expansions of tensor fields in terms of a single chart(
U,ϕ : U ⊆M→ Rn

)
, with coordinate vector and covector field bases {∂1, ..., ∂n} and {∂1, ..., ∂n},

where ∂i|p := ϕ∗(∂i|ϕ(p)) and likewise ∂i|p := ϕ∗(∂i|ϕ(p)). Thus for a (k, l) tensor field, we get
the expansion:

Φ = Φi1,...,ik
j1...,jl

· ∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl .

which is implicitly a point-dependent expression over U . If one is given a collection of global fields
constituting a frame, then one may have an expansion that does not depend on the chart:

Φ = Φi1,...,ik
j1...,jl

· Ei1 ⊗ ...⊗ Eik ⊗ εj1 ⊗ ...⊗ εjl

for an example. We do not really use the latter notation however. In most cases when global
constructs are needed, we patch together local ones with partitions of unity {fα : Uα → R}α∈A
to be described.

The base cases for tensor fields are valence (1, 0) and (0, 1) (respectively vector and co-vector
fields), denoted locally by:

X = Xi∂i and ω = ωi∂
i.

Some other notations used for the basis fields are ∂
∂xi := ∂i =: ei and dxi := ∂i =: ei.

There is ambiguity sometimes in writing out the coordinate expression for a tensor field, since
one writes the same symbol for the partials. Pay attention to the point dependency if it is speci-
fied, this is more or less important when talking about the component functions, which are hence
either Φi1...ik

j1...jl
: U → R or Φi1...ik

j1...jl
◦ ϕ−1 : Rn → R depending on context. One might see just a

real coordinate expression with the chart implied via pullback notation or words.

To make clear throughout, I specify valence and symmetry type in set theoretic notation e.g.:

Γ(Ξkl (TM)) ⊆ Γ(T kl (TM)) ⊇ Γ(Λk
l (TM))

Symmetric ⊆ Regular ⊇ Skew-symmetric

In particular, for differential forms Φ ∈ Γ(Λk(TM)) =: Ωk(M) we have strictly ordered multi-
index notation I = (i1...ik) for the basis vectors of the alternating tensor spaces at each point
given by the elementary k-forms:

∂I = ∂i1 ∧ ... ∧ ∂ik .

This is also seen as dxI = dxi1 ∧ ... ∧ dxik etc.

Certain quantities do not obey the indexing conventions as tensors do for example the exterior
derivative operators I’ve lower indexed. They have to be indexed somehow! It seems most authors
just write d to ambiguously mean the family of dk’s.

In other texts, one has the so called “mu-nu” notation, which instead of set membership nota-
tion uses latin indices to indicate valence and greek indices to indicate basis expansions in those
same indices listed. For example:

T ab = T µν ∂µ ⊗ ∂
ν
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for a valence (1, 1) tensor field. There is a combination of notations apparently, let index behavior
guide you. Contra-variant component indices up, Co-variant component indices down.

Texts like [14] in particular also use a shorthand for the symmetrization and skew-symmetrization
of tensors across selected indices, respectively written:

T(ab) := Sym(Tab) and T[ab] := Alt(Tab)

for example.
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Appendix B: Abstractions of Tensors

The discussion below is based off of multiple sources. See here for overall citations.
Import Abstract Algebra.

Multilinear Maps on a Single (Real) Vector Space

In the beginning of this document, before the development of tensor fields over manifolds with the
idea of sections of vector/fiber bundles, there were just plain old tensors on a (single) vector space.

T kl (V ) :=

{
ϕ : (V ∗)k × V l → R

∣∣∣∣ ϕ is linear in each variable

}
and we had the basis expansions (assuming a canonical basis existed):

ϕ = ϕi1...ikj1...jl
∂i1 ⊗ ...⊗ ∂ik ⊗ ∂j1 ⊗ ...⊗ ∂jl

written in terms of this curious new symbol ⊗ that essentially welded together existing linear
functions in the base cases and created multilinear ones. That is,

(ϕ,ψ) 7→ ϕ⊗ ψ.

Multilinear Maps on Different (Arbitrary) Vector Spaces or Modules

Although we stuck to a single vector space and its dual, there was nothing stopping us from welding
together linear functions defined on any number of different (real) vector spaces of potentially
different (finite) dimensions:

ϕ : V n1

1 × ...× V
nm

m → V
nm+1

m+1

where Vi may have no relation to Vj other than the scalar field. Moreover, in general for abstract
vector spaces, there is no canonical basis {∂1, ..., ∂ni

}. Why we got away with this before is that
our charts go into Rn which we know has a canonical basis. And we get the induced basis on the
tangent spaces etc. using the pushforward/pullback mechanisms.

We also can generalize to complex vector spaces, vector spaces over arbitrary fields (V/F ),
or even to modules over rings (RV or VR) instead, but then we get sidedness happening and

ϕ⊗ ψ(v, w) = ϕ(v) · ψ(w)

may start failing to be multi-linear if we can’t transfer the scalars all to one side (i.e. ifψ(λw) = λψ(w)
but ϕ(v)λ 6= λϕ(v)). There is a relaxed notion called middle-linearity, but this is usually dis-
cussed in a binary context not in general.
———————————————————————————————————————————

(Continues)
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Abstract Tensor Products of Modules

• Def: Let V1, ..., Vm be R-modules over a commutative ring with unit R. The free R-module
over the cartesian product (V := V1 × ...× Vm) is defined as:

F(V1 × ...× Vm) :=

{
finite formal R-linear combinations of (v1, ..., vm)

∣∣∣∣ vi ∈ Vi}
together with addition and the left R-action specified by:∑

v∈V
λvv+

∑
v∈V

µvv :=
∑
v∈V

(λv + µv)v

and

µ∗
( ∑
v∈V

λvv

)
:=

∑
v∈V

(µ · λv)v

[Exercise: Check that the module axioms are satisfied by these (see p.337 [3]).]
———————————————————————————————————————————

• Def: Now let S be the submodule generated by elements of the form:

v = (v1, ..., vi + v′i, ..., vm)− (v1, ..., vi, ..., vm)− (v1, .., v
′
i, ..., vm)

or
v = (v1, ..., λvi, ..., vm)− λ(v1, ..., vi, ..., vm)

for arbitrary scalar λ ∈ R, component index i ∈ {1, ...,m}, and elements vj ∈ Vj .

———————————————————————————————————————————

• Def: We define the tensor product of the R-modules V1, ..., Vm by the quotient module:

V1 ⊗ ...⊗ Vm := F(V1 × ...× Vm)/S =

{ ∑
v ∈ V
(finite)

λvv + S
∣∣∣∣ λv ∈ R}

and we denote the simple cosets via:

v1 ⊗ ...⊗ vm := (v1, ..., vm) + S

and we call them simple tensors. The more general elements, tensors, are just finite formal linear
combinations of simple tensors.
———————————————————————————————————————————

[Exercise: Prove for example that v ⊗ (w + w′) = v ⊗ w + v ⊗ w′. Hint: You can add and
subtract by elements of S maintaining the coset. Note that in the direct product structure
(v, w + w′) 6= (v, w)+̇(v, w′) := (v + v, w + w′). So what we have done is force isolated com-
ponent linearity by making (v, w + w′) ≡ (v, w) + (v, w′) (mod S) in the new +.]

[Exercise: Prove: V ⊗ ...⊗ V︸ ︷︷ ︸
k

⊗V ∗ ⊗ ...⊗ V ∗︸ ︷︷ ︸
l

∼= T kl (V ), for a vector space V via the map:

v1 ⊗ ...⊗ vk ⊗ ω1 ⊗ ...⊗ ωl 7→ ϕ, where
ϕ(ω′1, ..., ω

′
k, v
′
1, ..., v

′
l) := v1(ω

′
1) · ... · vk(ω′k) · ω1(v

′
1) · ... · ωl(v′l) and extend linearly.]
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