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Section 1: Introduction

In this project we explore two categories for which Modal Logic can be “embed-
ded”: Algebras and Coalgebras. Each side has its own perspective on the subject
and hence is able to “express” different things. We seek here to build a trifecta of
contexts for our Modal Logic toolkit. In the construction, the translations between
the nodes will become (at least somewhat) more apparent.

Since Modal Logic is in fact the focal point, we dedicate an entire section to
fully describing what Modal Logics actually are. In Section 3, we start completely
fresh from a categorical perspective and try to set up the framework for placing
in the correspondents of the modal logics. In the remaining two sections, these
correspondents are described.

We start in the case of general modal logics, but reduce to the case of (nor-
mal) modal logics, since there is a completeness result in this case (see pg.261 [4]).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Section Citings (See Bibliography):
>> 2.1 (pg.9-14 of [4])
>> 2.2 (16-24 of [4])
>> 2.3 (31-33 and 189 of [4])
>> 3 ([5],[6],[3],[2])
>> 4 ( p.262-283 and p.497-503 of [4])
>> 5
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Section 2: Modal Logic

〈〈 2.1 Languages and Formulas 〉〉

• Def: A modal language ML(τ,Φ) consists of a propositional language built
from an alphabet Φ = {p, q, r, ...} and a set of connectives {¬,∨,∧,→, ...},
together with a set of modal operators O = {4}i∈I of respective
arities ρ = {ρ(4i)}i∈I . We refer to the modal similarity type of ML(τ,Φ) as
the pair: τ = (O, ρ). We can summarize in a more intuitive list:

ML(τ,Φ) =
{
(, ), p, q, r, ...,¬,∨,∧,→, ...,4i, ...

}
• Def: The grammar or syntax for ML(τ,Φ) is given by that of the propositional
language, together with the recursively defined action of the modalities. Summa-
rized as:

ϕ ::= p
∣∣ ⊥ ∣∣ ¬ϕ ∣∣ ϕ1 ∨ ϕ2

∣∣ 4i(ϕ1, ..., ϕρ(4i))

the set of formulas ϕ formed by these rules is denoted by Form(τ,Φ).

Ex: ϕ := “p→ �♦p” (Canonical for Symmetry), here � and ♦ are 4’s.

Technical Notes:
(1) For coding purposes, the subscripts on the modalities and formulas should be
taken as in the meta-language, distinct identifiers should be used instead.
(2) Also quantifiers and variables used in the sequel are in the meta-language to
define satisfaction etc. (although there does exist what’s called a Standard Trans-
lation into First-Order Logic, the two should be taken to be distinct at first).

Examples of Modal Languages: (Specified by Their Operators)
1.) The Basic Modal Language {♦,�} (both unary),
2.) Basic Temporal Language {〈F 〉, [G], 〈P 〉, [H]} (all unary),
3.) Propositional Dynamical Logic (PDL) Language {〈π1〉, [π1], 〈π2〉, [π2], ...}

(all unary),
4.) Arrow Language {1′,⊗, ◦}, arities {0, 1, 2},

[See (p.9-14) [4]].

We purposefully ignore what a modal operator is until our discussion of satisfaction
of formulas. From there it should become clearer.
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〈〈 2.2 Frames, Models, and Satisfaction of Formulas 〉〉

We have a language to work with, now we want to instantiate the language with
models, so that we can talk about “truth”.

• Def: Given a modal similarity type τ , a τ -frame is a pair:

Fτ ≡ F := (W, {R4}4∈τ)

where W 6= ∅ is called the universe (a.k.a. underlying set or state space or set
of worlds) and each R4 ⊆W × ...×W︸ ︷︷ ︸

n=ρ(4)+1

is a n-ary relation corresponding to

4 ∈ τ . Note that frames are also called relational structures.

• Def: Given a modal language ML(τ,Φ), a valuation is a function assigning
propositional letters to subsets of the universe (where they are true):

V : Φ→ P(W ); p 7→ V (p) ⊆W .

We extend valuations to be on Form(Φ, τ), but this requires us to define satis-
faction of the modalities first.

• Def: A τ -model is a τ -frame together with a choice of valuation, denoted:

M :=
(
F , V

)
≡
(
W, {R4}4∈τ , V : Φ→ P(W )

)
Hence for a given frame, there is a different model given by each choice of valuation.

• Def: Given a τ -model M, a state w ∈ W , and p ∈ Φ, we say
p is satisfied at w ∈W iff the state w is in the image of p under the valuation.
We indicate this relationship symbolically as:(

M, w |` p

)
↔
(
w ∈ V (p)

)
We also say “the model satisfies p at w”.

(Continues)
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Def (Continued):

We define recursively, satisfaction of ϕ ∈ Form(τ,Φ) at w ∈W

(i)

(
M, w |` ⊥

)
never (for consistency),

(ii)

(
M, w |` ¬ϕ

)
↔
(
w 6∈ V (p)

)
,

(iii)

(
M, w |` ϕ ∨ ψ

)
↔
(
w ∈ V (ϕ) ∪ V (ψ)

)
,

and for the modal operators:

(iv)

(
M, w |` 4(ϕ1, ..., ϕn)

)
↔(

∃v1, ..., vn ∈W such that R4wv1...vn and ∀i ∈ {1, ..., n}, vi ∈ V (ϕi)

)
.

(Fig: Satisfaction of subformulas at some R4-accessible worlds)

————————————————————————————————————
Okay, so we’ve defined satisfaction of arbitrary formulas at a point in a model.

This can be extended from a single model to satisfaction at the point in a class of
models M , or at a point in a frame F , or in a class of frames F (by applying the
appropriate quantifiers). As well, each of these can be extended globally (that is,
at every point in W ).

• Def: We denote satisfaction in each case via “S,w |` ϕ” or “S |` ϕ”
for whatever structure S we are dealing with. In particular, when S is at the level
of frames (hence independent of model valuations), we say ϕ is valid at a state
w ∈W if it is satisfied at a state in the frame or class of frames.
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Let’s now talk about consequences of true formulas.

• Def: Fix a type τ . Then for a set of formulas Σ, a formula ϕ, and a class of
structures S, we say ϕ is a local semantic consequence of Σ over S
(denoted Σ |`S ϕ) iff:

∀A ∈ S,∀w ∈ A

(
A, w |` Σ =⇒ A, w |` ϕ

)
.

This can of course be upgraded to a global definition on different structures S.
We’ll omit this.

Lastly,

• Def: The set of all formulas valid on a class of frames is denoted by ΛF and
is referred to as the logic for F . This leads to a notion of generating sets of
formulas for logics. More to come.
————————————————————————————————————

Before we move on to the next subsection, we should reflect a little. We just
defined what it means for an abstract modal-formula to be “true”, when evaluated
in various classes of structures at single points or at all points. Moreover, we just
defined what it means in each of the structures for a set of formulas to imply an-
other one. This notion has a syntactic cousin, namely a proof in a deductive system.

Reference (p.33 [4]) for more on the relationship between the two cousins
[Soundness and Completeness].
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〈〈 2.3 Axioms, Rules of Inference and Deductive Systems 〉〉

As mentioned in the last subsection, there is another way to go about building
logics and it is abstracted from the whole frame/model/structure discussion (but
intimately related).

• Def: A modal logic Λ is a set of modal formulas that contains all propositional
tautologies and is closed under modus ponens (that is, if ϕ ∈ Λ and (ϕ→ ψ) ∈ Λ,
then ψ ∈ Λ) and uniform substitution (that is, if ϕ ∈ Λ then so are all of ϕ’s
substitution instances).

• Def: Modus ponens and uniform substitution are examples of rules of infer-
ence, i.e. operators on the set of formulas which have as input, valid formulas,
and as output, valid formulas. If Λ is generated under these rules of inference from
a subset of logically independent formulas Γ, we call Γ the axioms of the logic.
Together, axioms and rules of inference form what are called deductive systems.
Our modal logics constitute a class of examples of deductive systems.

• Def: We define a syntactic consequence symbol “`Λ” as follows: If Σ ⊆ Λ
and ψ ∈ Λ are such that ψ is deducible from a sequence of rules of inference (or
from propositional calculus) from the set Σ, then we write Σ `Λ ψ and say
Σ proves ψ. When Λ is known, we drop reference to it in the symbol.

• Def: For such a Λ, we say if ϕ ∈ Λ then it is a theorem of Λ and write
`Λ ϕ as a shorthand for Λ `Λ ϕ. More simply, ` ϕ.

We reduce our discussion for the next definition to the case of the basic modal
language with binary operators {♦,�}.

• Def: A modal logic is called normal if it contains the two axioms:
(K) �(p→ q)→ (�p→ �q),
(Dual) ♦p↔ ¬�¬p,

and is additionally closed under the rule of inference generalization
(that is, if ` ϕ, then ` �ϕ). Normal modal logics generated from these and ad-
ditional formulas Γ are denoted Λ = KΓ. See (pg.193 [4]) for examples of suchKΓ.
————————————————————————————————————

This concludes the discussion for the other perspective.
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Clear A.

Section 3: F-Algbras and F-Coalgebras

•Def: (Pg.4 [3]) An algebra or algebraic structure is a triple A = {A, {fi}i∈I, τ},
where A is the carrier set or underlying set, the fi’s are ni-ary operations on A,
and the type τ is a set containing the arities corresponding to each fi. Moreover,
we usually impose identities or compatibility conditions between the operations.
(Think groups, rings, fields, vector spaces, modules, etc.)

Now recall basic categorical definitions: category, object, morphism, dual category,
and functor as in [2]. We can generalize algebraic structures to the categorical
realm in the following way based off of [5] (see alternatively in [2] (p.220)):

• Def: Taking any category C with A as an object, with finite products, and a
terminal object, the identities in an algebraic structure can be rewritten in terms
of morphisms and commutative diagrams that they satisfy and these morphisms
can be glued together via taking the morphism coproduct. What we get is a single
functor, called the signature functor Fsig. This is very involved and I recom-
mend the example given for the case of groups in [5] (Exercise).

F Def: If Fsig ≡ F : C → C is an endofunctor on a category C, then an F -algebra
is a pair (A,α) ≡ AF , where A ∈ Obj(C) and α ∈ HomC

(
F (A), A

)
. We call

A the carrier set (or underlying set) of the algebra.

• Def: A homomorphism of F -algebras (A,α) and (B, β) is a morphism
between the carrier sets, f ∈ HomC(A,B), such that the following diagram com-
mutes:
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• Def: With F -algebras as objects and the homomorphisms just defined, we get a
category (as the reader should check), call this category Alg(F ).
————————————————————————————————————

Referencing [6] now:

F Def: Let F : C → C be an endofunctor on a category C. An F -coalgebra is a
pair (Aop, αop) ≡ Aop

F , where A ∈ Obj(C) and αop ∈ HomC
(
A,F (A)

)
. Again,

A is the carrier set.

• Def: An F -coalgebra homomorphism from (A,α) to (B, β) is a morphism
g ∈ HomC(A,B) such that the following commutes:

• Def: The F -coalgebras and their associated morphisms form a category (as be-
fore), which we’ll call CoAlg(F ).

The duality is given by reversing the arrows in C. The two categories Alg(F )
and CoAlg(F ) are not dual. (I.e. g 6= f op (Exercise)).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Notes:
(1) The same signature functor F is used to describe all the algebras in the category
Alg(F ) and all coalgebras in the category CoAlg(F ).

(2) We assume (at this point) that how ever a co-algebra is defined in the non-
category-theoretic setting, it can be upgraded to this version in a way analogous
to how we took algebraic structures A and turned them into F -algebras (A,α)
(Exercise).
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Now that we have seen the beasts we are up against, let’s try to observe how
Blackburn et al. and Jacobs et. al. describe fitting Modal Logic into all of this.
————————————————————————————————————

(Next page)
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Section 4: Algebraizing Modal Logic

Let’s recall real quick that we just saw that the duality functor induces a map be-
tween the categories Alg(F) and CoAlg(F). [Exercise: Describe this functorially].

We also saw that an element of Alg(F ) (i.e. an F -Algebra) is an algebraic structure
A, phrased in a category/functor relationship F : C → C, by (A,α : F (A)→ A).

In this section, we aim to describe how normal modal logics [Recall (pp.6-7)
here ΛF ] fit into the traditional algebraic structure A perspective (both semanti-
cally and syntactically), but at a very superficial level. In Section 5, we’ll shoot for
the (Aop, αop) notion more directly.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Paraphrasing (pp.261 and 275-283) of [4]:
On (p.261) the author states “The basic idea is to extend the algebraic treatment
of classical propositional logic (which uses boolean algebras) to modal logic. The
algebras employed to do this are called (Boolean Algebras with Operators (BAOs).
The boolean part handles the underlying propositional logic, the additional oper-
ators handle the modalities.”

On (p.275), “semantically, we deal with (an extension of) what’s called a power
set algebra that includes certain operations mR4, this extension is called a complex
algebra and it is a particular example of a BAO.

On (p.281) the syntactic side, normal modal logics are given Lindenbaum-Tarski
algebras which are quotient algebras of the associated formula algebras by a certain
congruence relation, together with the appropriate operations. The Jónsson-Tarski
Theorem tells us that these Lindenbaum-Tarski algebras have set-theoretic repre-
sentations as complex algebras.”

There is clearly a lot going on here and it takes a lot of time to cover every defi-
nition involved, so we will only observe some of the main definitions mentioned in
the paraphrasing. Even with these definitions, it takes a lot of work to show that
these are the proper settings to model normal modal logics or logics for classes of
τ -frames. We take the observers perspective here.
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• Def: (p.275) Let τ = (O, ρ) be a modal similarity type. A boolean algebra
with τ -operators is an algebra:

A = (A,+,−, 0, f4)4∈τ

such that (A,+,−, 0) is a boolean algebra and every f4 is an operator of arity
ρ(4). That is, f4 is an operation satisfying:

(Normality): f4(a1, ..., aρ(4)) = 0 whenever ai = 0 for some i ∈ {1, ..., ρ(4)}
(Additivity): For all i ∈ {1, ..., ρ(4)},
f4(a1, ..., ai + a′i, ..., aρ(4)) = f4(a1, ..., ai, ..., aρ(4)) + f4(a1, ..., a

′
i, ..., aρ(4))

• Def: (p.267) Let A be a set. Denote the power set of A by P(A) (the set of
all subsets of A). The power set algebra P(A) is the structure:

P(A) = (P(A),∪,−, ∅),

where ∅ denotes the empty set, − is the operation of taking the complement of a
set relative to A, and ∪ the set union operator.

Notes: “We think of A as the set of worlds and a proposition as a subset of A
(the worlds that make it true). In this regard ⊥ is ∅ and ∪ plays the role of ∨,
lastly complementation, −, mirrors negation.”

• Def: (p.277) For a binary relation R, (i.e. corresponding to a basic modality), on
a τ -frame, we define:

mR(X) = {y ∈W | ∃x ∈ X such that Ryx}.

In other words, “mR(X) is the set of all states which ‘see’ a state in a given subset
of X of the universe.” (Exercise: Extend this to the general similarity types.)

• Def: (p.277) Let τ be a modal similarity type, and F = (W,R4)4∈τ a τ -frame.
The (full) complex algebra of F (notation: F+), is the expansion of the power
set algebra P(W ) with operations mR4 for every operator 4 ∈ τ . A complex
algebra is a subalgebra of a full complex algebra. If K is a class of frames, then
we denote the class of full complex algebras of frames in K by CmK.

Now that we’re somewhat acquainted how modal logic is algebraized. Let’s ex-
plore how it is coalgebraized.
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Section 5: Co-Algebraizing Modal Logic

We reference [1] for the remainder of this paper.

• Def: (p.1) Define a coalgebra - informally - to be a function of the form:

S
c−→ [. . . S . . . ]

where S is the state space and c is the transition function or transition struc-
ture. The codomain [. . . ] is called the type or interface of the coalgebra.

“The idea is that coalgebras describe general ‘state-based systems’ provided with
‘dynamics’ given by the function c.

It turns out there is a functor involved, as we have seen, this is phrased as:

(A, c : A→ F (A)).

Skipping a lot of material, the author mentions the importance of so called predi-
cate lifting, which we will attempt to define after the following excerpt:

• Def: (p.379) For a functor F : Sets→ Sets a coalgebraic modal logic is
given by a modal signature functor L : Sets→ Sets and a natural transforma-
tion:

δ : LP ⇒ PF ,
where P = 2(−) : Setsop → Sets is the contravariant powerset functor.

“Given such a δ : LP ⇒ PF , each F -coalgebra c : X → F (X) yields an L-algebra
on the set of predicates P(X), namely:

L(P(X))
δX−→ P(F (X))

c−1=P(c)−−−−−→ P(X)

which yields a functor CoAlg(F )op → Alg(L) in a commuting diagram given by:
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...Predicate lifting is described as a functor Pred(F ) : P ⇒ PF . In the above def-
inition this is generalised by adding a functor L in front, yielding LP ⇒ PF . This
L makes more flexible liftings - and thus more flexible modal operators - possible.”

As a final remark, Definition 1.3.2 (p.19) gives definitions for henceforth P and
eventually P as two modal operators acting on predicates on the state space of a
sequence coalgebra. This is a good example to look at to get a feel of where the
construction is going.

There is quite a bit of overhead as far as definitions are concerned, the construc-
tions were not as accessible as I imagined at the start of this project. There are a
ton of things glossed over, but as far as the goal of understanding to some degree,
the interplay between modal logic and algebraic/coalgebraic constructions, I think
some parts of the battle were won. Thanks for reading!
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Challenges/Exercises:

1.) Look into the creation of signature functors for F -algebras as in the discussion
on (p.8)

2.) Prove Alg(F ) and CoAlg(F ) are not dual as categories (see p.9).

3.) Create signature functors from F -coalgebras (p.9).

4.) Better specify the translations in sections 4 and 5.

5.) Extend the definition of mR(X) to general similarity types.

6.) Create an example of each type of translation in the basic temporal language
(for coalgebras at least see (p.22) of [1]).
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