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Introduction

Categories are generalizations of at least algebraic structures and geometric structures and logical
structures. We study Category Theory Proper to get general results and a perspective on multiple
subjects at once. In my experience, some attacking points from the concrete side are:

1.) The Fundamental Group of a Topological Space can be thought of as a functor (between
categories Top and Grp) assigning a connected space X to its (non-point-dependent) fundamental
group G := π1(X). [Algebraic Topology]

2.) Subgroups of the Fundamental Group are in Galois-Correspondence with Sub-covering spaces
of the Universal Covering Space U : U → X for the base space X. Turns out that U : U → X
satisfies a universal property and is an example of an initial object in the category TopCov(X).
[Algebraic Topology]

3.) In [Riemann Surfaces] we have sheaves (e.g. of meromorphic functions, differential forms,
tensors, etc.) and cohomology groups given by chain complexes specified by such sheaves and
particular topological covers for the Riemann surface. The (intrinsic, non-cover-dependent) coho-
mology groups are examples of direct limits (of systems of groups). These three notions generalize
to category theory.

4.) In [Modal Logic], we have the notion of duality appear between associated categories of
F -algebras and coalgebgras (that is: Alg(F ) and CoAlg(F ), where F is a functor built from the
operations and identities of the algebraized modal logic).

† See reference projects [?, ?, ?] for more information on some backing theory presented in (2-4).

5.) In [Representation Theory], we have an example of adjoint functors given by Restriction and
Induction of representations, ρ↓GH , ρ↑

G
H .

These are motivating points for studying the theory, but are not exclusively what we explore in this
paper. This is as much a research paper for myself as it is an instructive tool for those who read it. The
arrangement appeals to my abstract algebraic intuition.

This is by no means a comprehensive text and will be purposefully cut short as to give the reader an
initial bar to be reached in studying. This bar is reinforced by the qualifying exam problems being solvable
at the point of completion.

Some reference notes are given on the next page and a full bibliography is given in the back of the
text.

I received my Masters in Pure Mathematics from California State University, Long Beach in the Spring
of 2020; I did a year of Ph.D. study at ASU in 2018 (timeline correct!), where I studied category theory
under Nancy Childress; Bachelor’s from UC Irvine; Associates from Orange Coast College, where I was
introduced to the subject in a summer seminar lead by Arthur Moore. I immediately was drawn to the
subject upon first encounter and have had a difficult time leaving it alone! It was my pleasure to hold
discourse with Rico Vincente (my collegue from CSULB) on some of the qual problems listed here. Thanks
to my family for letting me rant this abstract nonsense to them!
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Introduction

Overall Section Citations:

I.1: [?],[?],[?],[?]
I.2: [?] and [?]

II.1: [?]
II.2: [?], [?], and [?]
II.3: [?] and [?]
II.4: [?]

III.1: HA University Comprehensive Exams.
III.2: [?], [?], and [?]
————————————————————————————————————————————

In terms of quick references, Wikipedia has great articles on the subject:

[ Glossary of Terms ] [ Basic Concepts ]

Otherwise, here are some more that you should go download. A complete list is given in the bibliography.

v

https://en.wikipedia.org/wiki/Glossary_of_category_theory
https://en.wikipedia.org/wiki/Category_theory#Basic_concepts


1. Universes and Categories

As described in [?] (p.16-22), we expand the [Zermelo-Fraenkel Set Theory] by introducing universes.
[See (p.19 of [?]) for ZF-Set-Theory Axioms I-VIII discussion as well.]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Def: A universe U is a set (of sets) subject to the following closure axioms:

1.) A ∈ U =⇒ A ⊂ U,
[Set/Class Axiom]

2.) A ∈ U and B ∈ U =⇒ {A,B} ∈ U (set with the elements A,B),
[Primitive Union Closure]

3.) A ∈ U =⇒ P(A) ∈ U

[Power Set Closure],
4.) If J ∈ U and if f : J → U is a map, then

( ⋃
j∈J

f(j)
)
∈ U

[Arbitrary Union over Elements of the Universe Closure].

New ZFST Axiom: Every set is an element of a universe. Thus, in particular, every universe is an
element of a higher universe. U ∈ V

• Def: With respect to a universe U. We define sets (more exactly: U-sets) to be the elements of
U. Classes (more exactly: U-classes) are the subsets of U.

Sets are classes (by definition), but not all subsets of the universe are elements of the universe [Exer-
cise: Find a counter-example], so there are classes which are not sets. We call things in the complement
proper classes.

——————————————————————————————————————————
The axioms in this expansion of ZFST were designed to imply that the usual constructions of set theory,
carried out with elements of U, land back in U.

• Proposition: (p.17 [?])
i.) If A ∈ U, then every subset of A is also an element of U.

ii.) For any two sets A and B ∈ U, we also have A×B and {f : A→ B} are in U.

iii.) The product set
∏
j∈J

Aj is an element of U if the indexing set and all the family members are

in U.

Proof: [Exercise.]
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Section I.1: Universes and Categories

• Def: (pg.1 [?])
Let us assume a particular universe U is given and define the following symbols:

C :=

{
Obj(C), Hom(C), ◦, Id(C)

}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Obj(C) := {A,B,C, ...,X, Y, Z, ...}, we call the elements in this collection, objects.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Hom(C) :=
{
HomC(A,B)

∣∣∣∣ A,B ∈ Obj(C)};

HomC(A,B) :=
{
f : A→ B

∣∣∣∣ f preserves the structure of objects in C
}

,

we call the elements (f : A→ B), morphisms with domain A and codomain B.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Composition of morphisms, is taken to be an associative binary operation:

◦ : Hom(C)×Hom(C)→ Hom(C);

(f, g) 7→ g ◦ f

defined only when dom(g) = codom(f). For instance, we also write

◦ : Hom(A,B)×Hom(B,C)→ Hom(A,C),

for arbitrary triple of objects (A,B,C).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Id(C) :=
{
IdA : A→ A | A ∈ Obj(C)

}
⊆ Hom(C),

we call these identity morphisms and define them to be such that ∀A,B, ∀f ∈ Hom(A,B),

f ◦ IdA := f and IdB ◦ f := f .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The four pieces of data listed above define a category, C.
———————————————————————————————————————————–

(Continues)

2



Section I.1: Universes and Categories

Notes:
1.) When context is known, we drop the C in HomC(A,B).

2.) Alternative notations are used such as |C| := Obj(C), Mor(C) := Hom(C), or:

[A,B]C = HomC(A,B) or just [A,B] = Hom(A,B).

3.) On (p.1 [?]), Schubert defines another axiom that says the Hom(A,B) collections are disjoint for
distinct pairs (A,B). But [?] does not list it. [Exercise: Why would we need this?].

4.) Schubert also mentions that identities uniquely determine objects and vice versa. So that

Obj(C)↔ Id(C) ⊆ Hom(C).

Small and Large Categories:
———————————————————————————————————————————–
The following is based on p.18 in [?], p.11/23 [?] but there are discrepancies in each so we make our own
sensible definition.

• Def: Given a universe U, a category is called U-small if Hom(C) is a U-set.

Otherwise, a U-large category is one such that Hom(C) is a (proper) U-class.

In general, we refer to U-categories as ones where Hom(C) is a U -class (could be a set or proper class,
ambiguous).
———————————————————————————————————————————–
In practice, one can ignore the size considerations given above and just refer to the Obj(C) and Hom(C)
entities as “collections” instead of sets or classes to avoid that discussion until necessary. Moreover, the
references simply consider a fixed universe containing the usual number systems N,Z,Q,R,C etc. for con-
creteness. Whether this is sufficient to cover all examples of categories we will encounter, I am not sure.
The reader should care about universes until Section I.2 and then the take away should be the definition
of a category given by C = {Obj(C),Hom(C), ◦} from then on out.
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Section I.1: Universes and Categories

1.1 Abstract Examples of Categories:

Before listing familiar examples, we are going to describe special types of categories.

• Def: A discrete category is one such that Id(C) = Mor(C).
———————————————————————————————————————————–
• Def: Useful later in Presentations of Functors and separately in Limits, we will develop the examples of:

> Path Categories
> Categories of Diagrams of Type Σ/K, and
> Categories of Diagrams Schemes.

[See Part II, Section 1].

These allow us to consider categories constructed from (or reduced to) underlying graphs (as in graph
theory). The graphs are also referenced as patterns. These typify categories, allow us to describe functors
graphically, and help us to distinguish different types of limits, which play a big role.
———————————————————————————————————————————–
• Def: A connected category C is one such that any two objects can be linked together by a sequence
of Hom sets that are non-empty [?].
———————————————————————————————————————————–
• Def: An enriched category is one in which all of the Hom(A,B) collections have extra structure,
especially algebraic. This leads to the notions of Sheaves.
———————————————————————————————————————————–
• Def: Given any category, C, the dual category denoted Cop has the same object collection except with
the morphisms reversed, however we maintain the distinction with the labels. That is: ∀A,B ∈ Obj(C),
we have:

Aop, Bop ∈ Obj(Cop), are such that Aop := A and Bop := B and

HomCop(Aop, Bop) := HomC(B,A), i.e. (fop : Aop → Bop) := (f : B → A)

Of course composition is defined as fop ◦̇ gop := g ◦ f . [?]

This notion of dual allows us to treat only covariant functors (when we get to it), by pre-composing with
the duality functor: Op : C → Cop. [Exercise: Prove that pre-composing with Op changes contra- to
co- and post-composing changes a co- to contra-. See the section on functors first of course.]

———————————————————————————————————————————–
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Section I.1: Universes and Categories

Abstract Examples of Categories (Continued):

• Def: Suppose for a given category C, the elements of Hom(C) are called 1-morphisms. If for any
pair of morphisms f, g ∈ Hom(A,B) we have the enrichment Hom(f, g) of 2-morphisms (also called
commutative squares), we refer to C as a 2-category. Further enrichment of the 2-morphisms leads to
n-morphisms and n-categories. The study of n-categories (strict and weak) is known as higher cate-
gory theory [For more on n-categories, see [?]].

Example: A particular example of a 2-category, C̃, is the category of categories, where:{
Obj(C̃),Hom(C̃)

}
:=
{
{categories C}, {functors F : C → D}C,D

}
.

Natural transformations η : F → G (to be defined) provide the 2-morphisms.

———————————————————————————————————————————–
Recall the discussion on universes and small versus large categories. We introduce the following abstract
examples of categories (see p.19-22 in [?]):

Ens ≡ Set: The category of U-sets and their maps.
ENS: The category of V-sets and their maps. (U ∈ V)

cat: The category of U-small categories and functors between such categories.
Cat: The category of all U-categories (small and large) and functors between such categories.
CAT : The category of V-small categories and like functors. (U ∈ V)

[C,D]X ≡ Fct(C,D)X : Category of functors between categories C and D with associated natural trans-
formations. Note: The functor category’s size depends on X = cat/Cat/CAT , since C,D ∈ Obj(X ).

Nat(C,D)X also exists (a level 3-category between C and D).

In terms of containment, we have:

Ens ⊂ ENS and cat ⊂ Cat ⊂ CAT and [C,D]cat ⊂ [C,D]Cat ⊂ [C,D]CAT

[Exercise: Prove these inclusions.]
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Section I.1: Universes and Categories

1.2 Concrete Examples of Categories:

Now, let’s list some familiar examples of basic categories (reader should pick one and show that the defi-
nition is satisfied). We won’t be too rigorous here.

Rel = {U-sets, binary relations between them},

Grp = {groups, group homomorphisms},
Ring = {rings, ring homs},
Field = {fields, field homs},
RMod = {left R-modules, R-linear maps}
V ecK = {vector spaces over a field K, K-linear maps},
Alg(F ) = {F -algebras (A,α : F (A)→ A) together with appropriate morphisms},
CoAlg(F ) = {F -coalgebras (A,α : A→ F (A)) together with appropriate morphisms},

Top = {topological spaces, continuous functions},
Pos(X) = {open sets in the topology on X and morphisms are given by the partial-order ≤},
TopCov(X) = {topological coverings of X together with covering morphisms},

Manr = {smooth manifolds, r-differentiable maps},
RS = {Riemann surfaces M , holomorphic maps},

Many more examples exist and are created for different theories (see [?] (p.2)).

6



2. Functors and Natural Transformations

• Def: A (covariant) functor between two categories is a bimap between both the collections of objects
and morphisms, obeying certain “structure preservation” properties.

Particularly, we write F : C → D and mean F : {Obj(C),Hom(C)} 7→ {Obj(D),Hom(D)}, where:

1.) ∀X ∈ Obj(C), F (X) ∈ Obj(D),

2.) ∀f ∈ HomC(X,Y ), F (f) ∈ HomD(F (X), F (Y ))

Such that:
3.) ∀f, g ∈ Hom(A,B),Hom(B,C) respectively, we have F (g ◦ f) = F (g) ◦ F (f)
4.) ∀X ∈ Obj(C), F (IdX) = IdF (X).

That is, composition and identities are preserved. Note F =: (F1, F2) may be used.

———————————————————————————————————————————–
• Def: A (contravariant) functor, F : C → D, is identical to the above except in items (2) and (3) we
have:

2.’) ∀f ∈ HomC(X,Y ), F (f) ∈ HomD(F (Y ), F (X))
3.’) ∀f, g ∈ Hom(A,B),Hom(B,C) respectively, we have F (g ◦ f) = F (f) ◦ F (g).

Contravariant functors are said to be “arrow reversing”. It should also be noted that:

(contra.) F : C → D = (cov.) F : Cop → D

or equivalently
(contra.) F : Cop → D = (cov.) F : C → D

[Exercise: Prove these equalities. Recall our discussion of F ◦ Op and Op ◦ F from Section I.1.1].

———————————————————————————————————————————–
• Def: We say a multi-functor is one whose source is a product category (see Section II.4) and who’s
image preserves composition in a way specified by the variance:

E.g. for a (co-co)-bifunctor, F
(
(f, g) ◦ (f ′, g′)

)
= F (f, g) ◦ F (f ′, g′).

E.g. for a (contra-co)-bifunctor, G
(
(f, g) ◦ (f ′, g′)

)
= G(f ′, g) ◦G(f, g′).

A functor is said to have mixed variance if its partial functors exhibit separately co- and contra- variance.
By partial functor, we mean ones where all variables are fixed except for the ith one.

The particulars of the variance can be listed in a vector such as parts contra- and co- (2, 3) or more
explicitly (1, 0, 0, 1, 0), where 1 is contra-, 0 is co-variant.

7



Section I.2: Functors and Natural Transformations

• Def: A natural transformation, η : F → G, between functors F,G : C → D,
is an indexed collection of maps (also called components), {ηA}A∈Obj(C) making the following diagrams
commute for arbitrary f : A→ B:

That is, this family transforms one functor into another by altering the images subject to the commuta-
tivity conditions (red).
———————————————————————————————————————————–
• Def: A natural isomorphism between functors is a natural transformation η in which all the compo-
nents are isomorphisms as defined by the category. (More on types of morphisms later in Part II, Section
2). We denote naturally isomorphic functors via F ∼= G.

• Def: The term natural equivalence is also used. Two categories are said to be equivalent if there
exist two functors F : C → D and G : D → C such that both compositions:

F ◦G ∼= IdD and G ◦ F ∼= IdC

are naturally isomorphic to the identity functors. This is weaker than isomorphic categories in which
we have equality for the compositions and identities (p.21 [?]).

———————————————————————————————————————————–
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Section I.2: Functors and Natural Transformations

2.1 Primitive Notions Regarding Functors:

• Def: (p.25 [?]) A functor F : C → D is said to be faithful (resp. full, fully faithful) if:

∀A,B ∈ obj(C) FAB : HomC(A,B)→ HomD(F (A), F (B))

is injective (resp. surjective, bijective).
———————————————————————————————————————————–
• Def: F : C → D is called an embedding of C into D if:

F2 : Hom(C)→ Hom(D)

is injective.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Notes:
1.) Faithful functors need not be injective (i.e. need not be embeddings), as the following illustrates:

2.) Embeddings yield subcategories in the image, whereas faithful functors do not (see p.25 [?] for a coun-
terexample). Full functors also form a subcategory in the image.

[Exercise: Prove the statements in (2) with subcategory definition in Section II.4.1]
———————————————————————————————————————————–
• Def: (p.16 [?]) F : C → D is called essentially surjective if ∀Y ∈ obj(D) there exists X ∈ obj(C)
such that F (X) ∼= Y (i.e. the two objects are isomorphic).
———————————————————————————————————————————–
• Def: The Identity Functor, IdC, mentioned previously is just the bi-identity map on the objects and
morphisms of C.

———————————————————————————————————————————–

(Continues)
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Section I.2: Functors and Natural Transformations

• Def: Given two categories C and D, and Y0 ∈ obj(D), we define the constant functor:

∆Y0 : C → D;

∀X ∈ Obj(C), X 7→ Y0, and

∀A,B, ∀f ∈ Hom(A,B), f 7→ IdY0 .

Note: Compare this later with the constant diagrams AΣ : Σ→ A for some object A ∈ C and diagram
D : Σ→ C (see Section II.2).

———————————————————————————————————————————–
• Def: We wait until Part II, Section 4 to define products and coproducts of categories, but assume we
may speak of C × D or C q D. Then we have the associated Projection and
Injection Functors extrapolated from their set-theoretic counterparts.
For example: C × D → C or D → C qD.
———————————————————————————————————————————–
• Def: Given a category whose objects contain extra structure than just being sets (Groups for example).
The Forgetful Functor maps every object to its underlying set. By extension, the morphisms become
just set maps (we forget that they preserve structure).

Symbolically:
F : C → Set

X 7→ |X| and (f : X → Y ) 7→ (F (f) : |X| → |Y |)

Similarly, we may forget only part of a structure (p.7 [?]). For example algebraic structures can have
multiple operations.
———————————————————————————————————————————–
• Def/Prop: (p.8 [?]) The Power Set Functor is a contravariant functor given by:

P : Set→ Set;

A 7→ P(A), and

(f : A→ B) 7→ (P (f) : P(B)→ P(A));

X 7→ f−1(X).

10



Section I.2: Functors and Natural Transformations

2.2 Some More Notions and Examples of Functors:

Each of the following examples takes a bit to explain and hence warrants its own navigation menu. Each
particular example illuminates some definitions in category theory as well.

———————————————————————————————————————————–
Sub-Subsection Contents:

1: Hom Functors (Co-, Contra-, and Contra-Co-)

2: Representable Functors, Universal Elements, and Yoneda’s Map

3: Adjoint Functors

4: Presentations of Functors with Diagrams

———————————————————————————————————————————–
>> Jump to Part II
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Section I.2: Functors and Natural Transformations

1: Hom Functors (Co-, Contra-, and Contra-Co-):
• Def: (pp.7-8 from [?]) Suppose A,Z ∈ obj(C) and f ∈ Hom(X,Y ), with A fixed.

Then we define the co-variant Hom-functor HA : C → Sets via:

HA(Z) := Hom(A,Z) and

HA(f) : Hom(A,X)→ Hom(A, Y ),

where for u ∈ Hom(A,X) we define [HA(f)](u) := f ◦ u.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Def: We define the contra-variant Hom-functor HA : C → Sets via:

HA(Z) := Hom(Z,A) and

HA(f) : Hom(Y,A)→ Hom(X,A),

where this time, for u ∈ Hom(Y,A) we define [HA(f)](u) := u ◦ f .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

[Exercise: Prove each type of variance claimed in the definition.] >> [Proof]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Def: (p.11 [?]) Let X,X′, Y, Y ′ ∈ obj(C), f ∈ Hom(X,X′), and g ∈ Hom(Y, Y ′).
Then the contra-co-variant Hom-functor H : C × C → Sets is defined via:

H((X,Y )) := Hom(X,Y ) and

H((f, g)) : Hom(X′, Y )→ Hom(X,Y ′),

where for u ∈ Hom(X′, Y ) we define [H((f, g))](u) := g ◦ u ◦ f .
———————————————————————————————————————————–
Notes:
1.) We can retrieve HA by fixing the second object variable Y := A and setting g = 1A. Similarly we
can retrieve HA.
2.) The notation gets disgusting. We can also denote HA(Z) by [A,Z] and HA(f) by [A, f ]. This leads
to denoting H((f, g)) by [f, g] etc.
We also see H(?, ??) denoted by [Op?, ??] (p.12 [?]), where Op : C → Cop is the duality functor.
3.) Special Note: We’ll see Cop × C → D denoting a contra-co- bifunctor in doubly-covariant symbology
as a shorthand. This quickly tells the reader which component is contra- etc.
———————————————————————————————————————————–
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Section I.2: Functors and Natural Transformations

2: Representable Functors, Universal Elements, and Yoneda’s Map:
The following is based on p.25-28 [?].

• Def: A (covariant) functor F : C → Set is called representable if F is naturally isomorphic to a
co-variant Hom-functor HA : C → Set.

Given an object A, a particular representation of F is then a particular natural isomorphism:

ηA : HA → F

ηA :=

{
ηAX : Hom(A,X)

∼=−→ F (X)

}
X∈obj(C)

and we refer to the representing object A for F .

———————————————————————————————————————————–

• Def: Alternatively, a representation of F : C → Set may be described by a pair:(
A, u

)
, where A ∈ Obj(C) and u ∈ F (A).

We call A the representing object still, but we now call u the universal element of the representation.

Although A is predetermined by F being representable, we have choice in which u we want. This descrip-
tion arises from the following.
———————————————————————————————————————————–

• Prop: For A ∈ Obj(C) and a given covariant functor F : C → Set,

Nat(HA, F )↔ F (A),

that is, they are in 1-1 correspondence as sets.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof: Next Page.
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Section I.2: Functors and Natural Transformations

Proof (Smith): Let us define Yoneda’s map:

Y : Nat(HA, F )→ F (A)

ηA 7→ ηAA(IdA).

WTS the map Y is bijective.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Accordingly, suppose we have two αA, βA ∈ Nat(HA, F ) such
that Y (αA) = Y (βA), then αAA(IdA) = βAA(IdA).

Chasing down the explicit forms of the commutativity conditions for arbitrary object X and f ∈ HA(X)
(by definition of natural transformations and restricting to IdA ∈ HA(A)) yields:

αAX(f) = F (f)αAA(IdA) ; F (f)βAA(IdA) = βAX(f).

Together with the first equality, we have then αAX(f) = βAX(f). Arbitrariness of f tells us αAX ≡ βAX
and then arbitrariness of X yields αA = βA. Hence Y is injective.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Let u ∈ F (A) be given. WTS ∃ ηA ∈ Nat(HA, F ) such that Y (ηA) = u.

Accordingly, for arbitrary X and g ∈ HA(X) define:

ηAX(g) := [F (g)](u)

We need to show this yields the commutativity conditions for a natural transformation. Let’s draw the
usual picture:

We have then F (f) ◦ ηAX(g) := F (f) ◦ [F (g)](u) = [F (f ◦ g)](u) (by covariance).
And ηAY

(
[HA(f)](g)

)
:= ηAY (f ◦ g) := [F (f ◦ g)](u). So by arbitrariness of g ∈ HA(X), the commu-

tativity conditions are satisfied and ηA is a natural transformation.

Now, Y (ηA) := ηAA(IdA) := [F (IdA)](u) := IdF (A)(u) = u (by functor axiom). �
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Section I.2: Functors and Natural Transformations

3: Adjoint Functors:
Recall previously we defined the contra-co Hom functors.

• Def:(p.173 [?]) Let F : D → C and G : C → D be (covariant) functors. (F,G) is called a pair of
adjoint functors if there is a natural isomorphism:{

ηAB : HomC
(
F (A), B

) ∼=−→ HomD
(
A,G(B)

)}
(A,B)∈|D|×|C|

of contra-co-variant bifunctors from D × C → Sets.

In this case, G is called right adjoint to F (by means of η), F is called left adjoint to G and η
is called an adjunction isomorphism for (F,G). We also say that (η, F,G, C,D) is an adjunction
system.
———————————————————————————————————————————–

[Exercise: Prove that restriction and induction (of group representations ρ : G→ Aut(V ) with H ≤ G)
yields an adjoint pair.]
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Section I.2: Functors and Natural Transformations

4: Presentations of Functors with Diagrams:
See Part II, Section 1 before proceeding in this sub-subsection.

• Prop 6.3.2 from (p.40 [?]):

Let Σ be a diagram scheme and let K be a set of commutativity conditions for Σ. There exists a (small)
category, denoted P(Σ/K), called the path category belonging to Σ and K, together with a diagram
∆ : Σ→ P(Σ/K) satisfying the following universal property :

If C is any category, then:

(i) If D : Σ→ C is a diagram of type Σ/K, then ∃! functor FD : P(Σ/K)→ C such that:

(ii) Moreover, there is an isomorphism of categories:

[Σ/K, C]
∼=−→ [P(Σ/K), C],

where the map for objects is given by the rule D 7→ FD.
[Exercise: Give the associated map on morphisms].
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof of Prop 6.3.2 (See [?]). �
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Notes: This proposition tells us that any diagram factors through its diagram scheme’s associated path
category, uniquely giving rise to a functor FD. On the other hand, one may consider a functor F : C → C′
as a diagram if C is small with respect to its universe (recall diagram schemes were sets of vertices and
arrows) and if we take the underlying diagram scheme of C via:

V e := Obj(C) and Ar := Mor(C)

and the origin and end maps given by domain and codomain of the morphisms.

Hence we may write DF : ΣC → C′.
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1. Regarding Diagram Schemes and Diagrams

1.1 Getting to Commutativity Conditions:

• Def: (p.37 [?]) A diagram scheme Σ consists of two sets, called vertices and arrows, together with
two maps called origin and end, which keep track of the relational structure in V e×Ar × V e.

Syntactically, we may list diagram schemes as collections:

Σ =

{
V e, Ar,

{
o, e : Ar → V e

}}
such that arrows a ∈ Ar are designated by o(a), e(a) ∈ V e.

Note: As the author describes, diagram schemes are simply oriented graphs, but we phrase them in
category language for our needs in the sequel. Below we have some examples of diagram schemes listed
pictorially (one need not assign weights). We can of course apply set-theoretic constructions to these and
others to get nasty pictures with high cardinality.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

———————————————————————————————————————————–
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Section II.1: Regarding Diagram Schemes and Diagrams

• Def: (p.37) Let Σ be a diagram scheme and C be an arbitrary category.
A diagram in C of type Σ is a map:

D : Σ→ C

such that:

i.) ∀v ∈ V e, D(v) ∈ Obj(C) and
ii.) ∀a ∈ Ar, D(a) ∈ HomC

(
D(o(a)), D(e(a))

)
That is, diagrams map vertices to objects and arrows to morphisms in a way compatible with origin
and end.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

An example of a diagram of type Σ in C. Recall also the pattern terminology we used before.
———————————————————————————————————————————–
(p.38 [?])
• Def: A path in Σ (of length n) is a sequence of arrows, f = a1a2...an such that any two consecutive
arrows in the list obey o(ai+1) = e(ai) and we upgrade the origin and end maps to paths by declaring:

o(f) := o(a1) and e(f) := e(an)

• Def: Given two paths f, g in Σ with o(g) = e(f), we define their path-product f ∗ g by the concate-
nated sequence hence o(f ∗ g) = o(f) and e(f ∗ g) = e(g).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

[Exercise: Prove associativity of ∗ for combine-able paths f, g, h.]

[Exercise: Let f, g ∈ Ar such that o(g) = e(f) and let D : Σ→ C be a diagram. Show that
D(f ∗ g) = D(g) ◦D(f) as morphisms in C from D(o(f)) to D(e(g)). So that diagrams are compat-
ible with path product.]

———————————————————————————————————————————–

• Def: (p.39 [?]) If Σ is a diagram scheme, we construct its trivial extension Σ0 by adding for each
v ∈ V e an arrow Idv ∈ Ar such that o(Idv) = v = e(Idv).

18



Section II.1: Regarding Diagram Schemes and Diagrams

• Def: (p.39 [?]) A commutativity condition for a diagram scheme Σ is a pair of paths (f, g) in the
trivial extension Σ0 of Σ, where f and g have the same origin and end, that is:

o(f) = o(g) and e(f) = e(g).

A diagram D : Σ→ C is said to satisfy the commutativity condition (f, g) if we have:

D0(f) = D0(g) as morphisms in HomC
(
D(o(f)), D(e(g))

)
.

More generally, a diagram D : Σ→ C is called commutative if it satisfies every possible commutativity
condition.
———————————————————————————————————————————–

• Def:(p.40 [?]) Let Σ be a diagram scheme and let K denote a (possibly empty) set of
commutativity conditions for Σ. A diagram of type Σ/K is a diagram D0 : Σ0 → C satisfying all
commutativity conditions in K. Which means the image of the diagram is subject to identifications.

Now we have seen types of diagrams in categories subject to commutativity conditions. Let’s construct
some other categories.

(Next Page)
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Section II.1: Regarding Diagram Schemes and Diagrams

1.2 Some Technical Examples of Categories Lying Around:

• Def: (p.41 [?]) Given a diagram scheme Σ, we define the free category over Σ or the
path category over Σ, denoted P(Σ), to be such that:

Obj(P(Σ)) := V e and HomP(Σ)(v, w) := {paths from v to w}

together with path product and the identity arrows introduced in the previous section in the trivial exten-
sion Σ0.

• We may further impose a set of commutativity conditions K on our path categories. Whereby, we
denote P(Σ/K) as above, except now the Hom collections become equivalence classes under the relation

f ∼ g ↔ (f, g) ∈ K.

Note: If K = ∅, we’re back in the original definition.
———————————————————————————————————————————–

• Def: Let D1 : Σ→ C and D2 : Σ→ C be two diagrams of the same type (works for Σ/K too). We de-
fine a natural transformation of diagrams, similar to that of functors, as a family of maps, {λv}v∈V e,
indexed over vertices making the following commute for each arrow:

———————————————————————————————————————————–
• Def: We may then define the Category of Diagrams of Type Σ in C, denoted [Σ, C], to be the
collection of all diagrams, {D : Σ→ C}, together with morphisms being natural transformations between
diagrams, written for particular diagrams as say Hom[Σ,C](D,E) ≡ Nat(D,E).

Analogously, one may define [Σ/K, C] and [P(Σ/K), C], respectively the
Diagrams of Type Σ/K in C and the Functor Category between P(Σ/K) and C.

[Exercise: What are the identity morphisms and how do we define composition in each of these three
categories?]
———————————————————————————————————————————–
Note: (p.38 [?]) Lastly, we mention the Category of all Diagram Schemes and diagrams between them
(a.k.a. oriented graphs and morphisms thereof). We move on to discuss limits!

>> Pres of Functors | Equilizers <<
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2. Limits of Diagrams

Observe the following technical definitions before the desired ones.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• Def: (p.45 [?]) Let C be a category and Σ a diagram scheme.

For A ∈ obj(C), let AΣ : Σ→ C be the constant diagram:

∀v ∈ V e, AΣ : v 7→ A

∀a ∈ Ar, AΣ : a 7→ IdA

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Def: Given a morphism f : A→ B in C, we get an induced natural transformation of constant dia-
grams:

fΣ : AΣ → BΣ

via declaring fΣ := {(fΣ)v := f}v∈V e such that IdB ◦ f = f ◦ IdA (recall previous page).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Def: If D : Σ→ C is a diagram, then a nat. transformation from a constant diagram to D,
namely µ : AΣ → D consists of morphisms:

{µv :: A→ D(v)}v∈V e

such that µe(a) ◦ IdA = D(a) ◦ µo(a) for all arrows in Ar.
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Section II.2: Limits of Diagrams

F LIMITS
• Def: Given a diagram D : Σ→ C, we define the limit (L, λ) of the diagram to be
an object, L ∈ obj(C) together with a natural transformation of diagrams, λ ∈ Nat(LΣ, D), satisfying
the following:

Universal Property:

∀µ ∈ Nat(AΣ, D), ∃!f ∈ HomC(A,L) such that:

That is, every other natural transformation of diagrams from a constant diagram to D factors through λ.

———————————————————————————————————————————–

F CO-LIMITS
• Def: (p.62-63 [?]) Dually, given a diagram D : Σ→ C, we define the co-limit of the diagram
to be a pair (L̃, λ̃), where L̃ ∈ obj(C) and λ̃ ∈ Nat(D,LΣ), satisfying the following:

Universal Property:

∀µ ∈ Nat(D,AΣ), ∃!f ∈ HomC(L,A) such that:

That is, every other natural transformation of diagrams from D into a constant diagram factors through
λ̃.

Note: The tildes are not usually written it was to distinguish the limits from the colimits here nota-
tionally.
———————————————————————————————————————————–

(Continues)
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Section II.2: Limits of Diagrams

Notes:
1.) Let’s reinforce the distinction between a limit of a diagram and the limit’s universal property :

The limit is the pair (L, λ), all other such candidates of the form (A,µ1), (B,µ2), etc... have
“arrows into (L, λ)”. This feature gives rise to the alias: terminal object. Similarly, if we draw out the
other picture [Exercise], we see the feature of co-limits is that there are arrows coming out of (L̃, λ̃) for all
other candidates instead, giving colimits the alias: initial object. We will study initial and terminal objects
in categories in the next section.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2.) If we abstract and take a look at the pair (L, λ) a little closer, we get:

References [?] and [?] like to call this a cone (of type Σ). So that we have a good intuitive grasp on limits,
we think of them as terminal objects in the Category of Cones (left to the interested reader to look up).
Co-limits require the definition of co-cones (reverse arrow direction) etc.

(Continues)
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Section II.2: Limits of Diagrams

Notes on Limits (Continued):

3.) Seemingly implicit in all of this is the diagram D : Σ→ C for which (L, λ) is the limit. If we change
D or Σ for that matter, we can look for different types of limits and limiting objects in categories.

Examples of Limits (See [?]): (We’ll study some of these examples formally in the sequel.)

> Products
>> Powers

> Equilizers
>> Kernels

> Pullbacks
> Inverse Limits

Examples of Colimits:
> Initial Objects
> Coproducts

>> Copowers
> Coequilizers

>> Cokernels
> Pushouts
> Direct Limits
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4.) By the association we’ve seen between diagrams and functors, one can talk about limits of functors,
F : J → C, indexed by some category J - with appropriate adjustments in the definitions.
[Exercise: Rewrite the above constructions in terms of functors and fact check with [?].]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

5.) On Existence and Uniqueness of Limits and Colimits:
In the article [?], there is an existence theorem for limits and colimits stating criteria for a category to have
them. Also, the author of the article states: “if a diagram does have a limit, then this limit is essentially
unique: it is unique up to isomorphism”.

• Def: (p.50 [?]) A category is called complete if every diagram has a limit. It is called co-complete if
every diagram has a colimit.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

6.) Some advanced topics include:
i.) On Preservation of Limits by Functors,
ii.) Lifting of Limits, and
iii.) Creation and Reflection of Limits.
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3. Object-Level Constructions

In this section, we rattle off some special objects and morphisms seen in the theory and gather them by
local relevance to eachother.
———————————————————————————————————————————–
Subsection Contents:

1: Invertible Morphisms, Isomorphisms, Retractions, Coretractions

2: Monics, Epics, and Bimorphisms

3: Subobjects and Quotient Objects

4: Initial, Terminal, and Zero Objects

5: Product and Coproduct Objects

6: Equilizers and Coequilizers and (Kernels/Co-kernels)

7: Projective and Injective Objects

8: Generators and Cogenerators
———————————————————————————————————————————–
>> Jump to Section II.4
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Section II.3: Object-Level Constructions

1: Invertible Morphisms, Isomorphisms, Retractions, Coretractions

• Def: (p.3 [?]) Suppose some category C is given and let f ∈ Hom(A,B) and g ∈ Hom(B,A). If it
is the case that we have:

g ◦ f = IdA

then we say g is a left inverse for f and f is a right inverse for g.

If it is also the case that:
f ◦ g = IdB

then g and f become two-sided inverses or just inverses. Furthermore, considering f as fixed, existence
of a two-sided inverse qualifies f with the alias of isomorphism.

[Exercise: Prove uniqueness of inverses when they exist.]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Def: (p.34 [?]) Alternative terminology: Given r ∈ Hom(A,B) and s ∈ Hom(B,A).
If it is the case that:

r ◦ s = IdB

then r is called a retraction of s and s is called a co-retraction or section of r.

Note: Fixing an f ∈ Hom(A,B), sections of f are not unique in general. Likewise for retractions of
f . A go to example exists in Differential Geometry, where we have the perspective of vector bundles with
projections onto the manifold being the fixed maps and vector fields etc. being sections of the projection
maps.
———————————————————————————————————————————–
• Def: (p.3 [?]) Morphisms from an object to itself are called endo-morphisms.
That is, f ∈ Hom(A,A) =: End(A). Elements of End(A) that are also isomorphisms are called
auto-morphisms and the subcollection of all such morphisms is denoted Aut(A) for a given object A.
———————————————————————————————————————————
We may summarize the above conditions with diagrams schemes up to commutativity of paths.
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Section II.3: Object-Level Constructions

2: Monics, Epics, and Bimorphisms

Fig: Schematics for memorization.

———————————————————————————————————————————–

• Def: (p.32 [?]) We call f ∈ Hom(X,Y ) a mono-morphism (or monic) if it is left-cancellative.

That is, ∀g1, g2 ∈ Hom(A,X):

(f ◦ g1 = f ◦ g2) =⇒ (g1 = g2).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Equivalently, f is a monic if: ∀A ∈ obj(C), the induced maps:

HA(f) : Hom(A,X)→ Hom(A, Y )

g 7→ f ◦ g

are injective.
———————————————————————————————————————————–

• Def: (p.33 [?]) Dually, f ∈ Hom(X,Y ) is an epi-morphism (or epic) if it is right-cancellative.
That is, ∀g1, g2 ∈ Hom(Y,B):

(g1 ◦ f = g2 ◦ f) =⇒ (g1 = g2).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Equivalently, f is an epic if: ∀B ∈ obj(C), the induced maps:

HB(f) : Hom(Y,B)→ Hom(X,B)

g 7→ g ◦ f

are injective.
———————————————————————————————————————————–
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• Def: (p.34 [?]) A bi-morphism is a morphism that is left and right cancellative (i.e. it is both monic
and epic).
———————————————————————————————————————————–

Notes:
1.) In the category of Sets, monics are injective and epics are surjective. In general this is not the case.
[Exercise: Explore this relationship. Hint: See [?] (p.32-34) or the Qual Problem here.]

2.) • Def: (p.34) Every isomorphism is a bi-morphism but not conversely. Categories for which the
two notions are identical are called balanced categories.
[Exercise: Find a counter-example for the reverse direction. That is, find a bi-morphism that is not an
iso-morphism.]
———————————————————————————————————————————–
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3: Subobjects and Quotient Objects

• Def: (p.4 [?]) If C is a category such that ∀A,B, we have either:

Hom(A,B) = {fAB} or Hom(A,B) = ∅,

i.e. A and B are uniquely comparable or not comparable respectively, then the objects of C are given a
pre-order relation, ≤, defined via:

A ≤ B ↔ Hom(A,B) = {fAB : A→ B}

since ≤ is clearly reflexive and transitive. Of course, if every two objects are comparable, we say ≤ is a
linear order or strong order.

• Def: In the context of such a preordered U-class, we may define a new relation ∼ via:

A ∼ B ↔ (A ≤ B) and (B ≤ A)

which turns out to be an equivalence relation (reflexive, symmetric, and transitive). We then have
equivalence classes:

[A]∼ := {B | B ∼ A},

which partitions the object collection of C.

———————————————————————————————————————————–
Def: (p.43-44 [?]) Let X ∈ Obj(C) be given. Then define the morphism categories:

MX :=

{
Obj(MX) := {f ∈ HomC(A,X)

∣∣ f is monic, A ∈ Obj(C)};{
HomMX(f, g) := {ϕ ∈ HomC

(
dom(f), dom(g)

) ∣∣ f = g ◦ ϕ}
}
f,g∈Obj(MX)

}
and

EX :=

{
Obj(EX) := {f ∈ HomC(X,B)

∣∣ f is epic, B ∈ Obj(C)};{
HomEX(f, g) := {ψ ∈ HomC

(
codom(f), codom(g)

) ∣∣ ψ ◦ f = g}
}
f,g∈Obj(EX)

}
,

where composition is inherited from C. These are referred to respectively as the mono-morphisms with
codomain X and the epi-morphisms with domain X.

[Exercise: Show that for any pair f, g ∈MX or EX , that Hom(f, g) has at most one element (so
that each yields a pre-ordered class and hence the objects ofMX and EX get partitioned as well).]
———————————————————————————————————————————–

F Def: For a given X ∈ obj(C) we define subobjects of X to be the elements of Obj(MX)/∼ as
defined above. That is, a subobject of X is just an equivalence class [f : A→ X]∼ of monomorphisms
with codomain X.

Similarly, quotient-objects of X, denoted [f : X → B]∼ ∈ Obj(EX)/∼, are just equivalence classes
of epimorphisms with domain X under the relation described above.

Note: In concrete instances, one usually thinks of a subobject as the domain of a particular representative
(i.e. the A above). Similarly for quotients... B above. But we stress here the extra data.
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4: Initial, Terminal, and Zero Objects

• Def: (p.35 [?]) An initial object, I ∈ obj(C), has the property that:

∀Y ∈ obj(C), ∃!fY ∈ Hom(I, Y ).

Moreover, we require that ∀Y, |Hom(I, Y )| = 1.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Def: A terminal object, T ∈ obj(C), has the property that:

∀X ∈ obj(C), ∃!fX ∈ Hom(X, T ).

Moreover, we require that ∀X, |Hom(X, T )| = 1.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Def: A zero object, Z ∈ obj(C), has the property that:

∀W ∈ obj(C), ∃!fW ∈ Hom(W,Z) and ∃!gW ∈ Hom(Z,W ).

And require ∀W, |Hom(W,Z)| = 1 = |Hom(Z,W )|.

That is, zero objects are both initial and terminal.
———————————————————————————————————————————–

Notes: Rephrased, initial objects have arrows eminating from them to every other object in the category,
terminal objects have arrows converging to them for every other object in the category. Think sources and
sinks respectively. The zero object is like a trivial structure that “includes” in every other object and can
be “collapsed to” from every other object. This is of course a notion specific to our intuition in say the
category of groups.

Furthermore, as the author notes on (p.35), “there is a unique isomorphism between each pair of zero
objects of a category. Hence if zero objects exist in a category, we fix one and denote it by 0.”
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5: Product and Coproduct Objects

• Def: (p.49 [?]) A product in a category C is a limit of discrete type.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

That is, a product is a terminal cone whose base has a pattern given by (only) objects and identity
morphisms.

Recall: More explicitly, (P, λ) ∈ Obj(C)×Nat
(
PΣ : Σ 7→ P,D : Σ→ C

)
and ∀ other such pairs

(Q,µ), ∃!f ∈ HomC(Q,P ) such that µ = λ ◦ fΣ.

We refer to the object P as the product object.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Def: Dualizing the above, we get that coproducts are just colimits of discrete type.
That is, initial co-cones with discrete base. Hence defining coproduct objects as the P̃ in (P̃ , λ̃).
———————————————————————————————————————————–

(Continues)
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Note: We usually denote products/coproducts in binary notion or prefix notation with indexing. That is
for example:

P = A
∏
B or

∏
i∈I

Ai

P̃ = A
∐
B or

∐
i∈I

Ai

Examples:
1.) Listing out the limit (P, λ) := (P, {p1, p2}) in a special case where the natural transformation
λ = {λX}X∈obj(C) consists of two projection-esque maps, we get:

which can of course be upgraded to larger cardinalities for the base of the cone [Exercise].

2.) Coproducts have a similar description.

3.) Now we can talk about product categories C × D and multi-functors F : C × D → E etc.
in cat, Cat, CAT [See: Section II.4].
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6: Equilizers and Coequilizers

• Def: (p.47-48 [?]) Consider the limit (E, λ) of the diagram D : Σ→ C displayed below:

More precisely,
E ∈ obj(C) and λ ∈ Nat(EΣ, D) are such that:

Universal Property:
∀(F, µ) ∈ Obj(C)×Nat(FΣ, D), ∃! h : F → E for which µ = λ ◦ hΣ.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Note:
The commutativity conditions of the natural transformation λ imply that:

f ◦ λ1 = λ2 and g ◦ λ1 = λ2

[Review Section II.1.2 for clarification]. Since f and g are given, this says that this limit is specified by
a single map λ1 : E → A together with the equality: f ◦ λ1 = g ◦ λ1 and an appropriate version of the
universal property (other such µ1’s factor through λ1).

Under these conditions, the map λ1 : E → A is called an equilizer of the pair (f, g).
———————————————————————————————————————————–

• Def: (p.64 [?]) Dualizing the above (i.e. flipping arrows in the cone not in the base),
we get that a co-equilizer of f, g : A→ B is specified by:

λ̃2 : B → Ẽ such that λ̃2 ◦ f = λ̃2 ◦ g

and all other such (µ̃2 : B → F̃ )’s factor uniquely through λ̃2 as in µ̃2 = h̃Σ ◦ λ̃2.
———————————————————————————————————————————–

(Next Page)
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Kernels and Co-kernels

• Def: (p.36 [?]) Recall if a category has zero objects it has a unique zero object, 0, specified up to
isomorphism. By the initial and terminal object properties, we have for any pair of objectsA,B ∈ obj(C),
there is a unique map, 0A,B : A→ B, called the zero morphism from A to B, such that the following
commutes:

———————————————————————————————————————————–

F Def: (p.48 [?]) In a category with zero object(s), the special case of an equilizer of the pair f : A→ B
and 0 : A→ B is called the kernel of f . With the above considerations, the kernel may be denoted by(
K, ker(f)

)
in limit notation or by

ker(f) : K → A such that f ◦ ker(f) = 0KB

and any other such g : G→ A with f ◦ g = 0GB is such that ∃! h : G→ K with g = ker(f) ◦ h.
———————————————————————————————————————————–

F Def: (p.64) Similarly we define co-kernels,
(
K̃, coker(f)

)
, of morphisms f : A→ B by:

coker(f) : B → K̃ such that coker(f) ◦ f = 0
AK̃

subject to the initial universal property that any other such g : B → G with g ◦ f = 0AG
is such that ∃! h : K̃ → G with g = h ◦ coker(f).

———————————————————————————————————————————–

Note: The last two universal properties and definitions of kernel and cokernel get used extensively in
Homological Algebra.
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7: Projective and Injective Objects

Note the symbology used for monics and epics below. The unusual arrows indicate the double morphism

properties at the beginning or the end (as we have seen). Writing out explicitly aids in visualizing duality.

• Def: (p.89 [?]) P ∈ obj(C) is called projective if the corresponding covariant
Hom functor HP (•) takes epi-morphisms to epi-morphisms.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
More explicitly, if f : A→ B is an epimorphism, then so isHP (f) : Hom(P,A)→ Hom(P,B).

But since the latter is just a morphism in the category of Sets for which epics are surjective
maps, this implies that we call P a projective object if for any given epic f : A→ B, we have:

∀g ∈ Hom(P,B), ∃h ∈ Hom(P,A), such that f ◦ h = g

———————————————————————————————————————————–

• Def: (p.90) Dually, we call I ∈ obj(C) an injective object if the corresponding contravari-
ant Hom functor HI(•) takes mono-morphisms to epi-morphisms.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Explicitly, if f : A→ B is any monomorphism, then HI(f) : Hom(B, I)→ Hom(A, I) is
surjective.

I.e. for a given monic f : A→ B, we have:

∀h ∈ Hom(A, I), ∃g ∈ Hom(B, I), such that g ◦ f = h

———————————————————————————————————————————–
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8: Generators and Cogenerators

The following are bare definitions for the sake of seeing them. They crop up in more advanced
theory building up to a “Representation Theorem” (pp.91-95) [?]). See also Ch.5 of [?]

• Def: (p.91 [?]) Let C be a category and G be a set of objects of C. If:

∀A,B ∈ obj(C) and ∀f, g ∈ Hom(A,B),

∃h ∈ Hom(G,A) for some G ∈ G with f ◦ h 6= g ◦ h,

then we say G is a generating set. An object G is called a generator if {G} is a generating set.
———————————————————————————————————————————–

• Def: (p.92 [?]) Let C be a category and G̃ be a set of objects of C. G̃ is called a
cogenerating set if it is a generating set for Cop. That is, if the following is satisfied:

∀A,B ∈ obj(C) and ∀f, g ∈ Hom(A,B),

∃h̃ ∈ Hom(B, G̃) for some G̃ ∈ G̃ s.t. h̃ ◦ f 6= h̃ ◦ g.

The object G̃ is called a cogenerator if {G̃} is a cogenerating set.
———————————————————————————————————————————–

And that concludes our discussion on special objects and morphisms seen at the individual cat-
egory level. Next up, we consider the settings of cat, Cat, CAT !
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4. Category-Level Constructions

In this section we explore some universal algebraic like constructions.
———————————————————————————————————————————–

1: Subcategories

2: Quotients of Categories

3: Product and Coproduct Categories

———————————————————————————————————————————–

>> Jump to Section III.1
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1: Subcategories

• Def: (p.4 [?]) Given a category C, let us define a new category , D, by declaring:

(i) Obj(D) ⊆ Obj(C),

(ii) ∀A,B ∈ Obj(C), HomD(A,B) ⊆ HomC(A,B),

(iii) ∀A ∈ Obj(D), IdA ∈ HomD(A,A), and

(iv) ∀A,B,C ∈ Obj(D), ∀f ∈ HomD(A,B), ∀g ∈ HomD(B,C), g ◦ f ∈ HomD(A,C).

That is, we take sub-collections from the objects and morphisms of C, include all identities, and
close under “restricted” composition (associativity is inherited). The new category obtained in this
way is called a subcategory of C and the relationship can be indicated by D ⊆ C.
There is also an associated inclusion functor I : D → C.
———————————————————————————————————————————–

[ Exercise (Problem): In cat, Cat, CAT , where the objects are categories and the morphisms
are functors between them, we have the notion of sub-objects of a fixed category C0,

[F : D → C0]∼̇,

as equivalence classes of monomorphic functors with a common codomain (see Section II.3.3). How
does this definition reconcile with the one provided above for subcategories in this context?]
———————————————————————————————————————————–

Here are some more definitions related to subcategories:

• Def: In the event that we have equality in item (ii) above for every pair of objects in D, we
call D a full subcategory of C. This terminology aligns with our notion of (full) functors from
Section I.2.1 in the sense that the inclusion functor from a full subcategory to its super-category is
full.

• Def: (p.25 [?]) Recall that a functor F : D → C is an embedding if F2 : Hom(D)→ Hom(C)
is injective. In such a case, we call F (D) an embedded subcategory of C.

Note: It is not enough for the functor to be faithful to make F (D) into a category as Schubert
shows on (p.25) with a counterexample.
———————————————————————————————————————————–

• Def: (p.170 [?])
A category K is called reduced if any two isomorphic objects are identical. A subcategory K ⊆ C
is called a skeleton of C if K is reduced and if the inclusion functor ι : K → C is an equivalence.
That is,

∃G : C → K, for which G ◦ ι ∼= IdK and ι ◦G ∼= IdC
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2: Quotients of Categories

Recall: The objects of a category can be considered as a subcollection of the morphisms by way
of the identities. In this regard, any relation on the objects can be manifest as a relation on the
morphisms (just trivially extend the relation by inclusion). So WLOG below...

We want to construct quotients of categories by imposing certain “congruence relations” on them.
———————————————————————————————————————————
• Def/Prop: (p.42 [?]) Suppose we have a binary relation:

∼ ⊆ Mor(C)×Mor(C)

having the following properties:

1.) ∼ :=
⋃

A,B∈Obj(C)
∼AB,

where each ∼AB ⊆ Hom(A,B)×Hom(A,B) is an equivalence relation
(i.e. they are reflexive, symmetric, and transitive) and

2.) ∀ f, f ′ ∈ Hom(A,B), and ∀ g, g′ ∈ Hom(B,C), if the compositions are defined:

“ f ∼ f ′ and g ∼ g′ =⇒ g ◦ f ∼ g′ ◦ f ′ ”.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
We may list the quotient category as the two collections:

C/∼ :=

{
Obj(C/∼) := Obj(C),

Mor(C/∼) :=

{
Hom(A,B)/∼AB

∣∣∣∣ A,B ∈ Obj(C)}
}

together with a well-defined composition operation and identities, respectively:

[g]∼◦̃[f ]∼ := [g ◦ f ]∼ and [IdA]∼, for each object A.

Moreover P : C → C/∼; f 7→ [f ]∼ defines a projection functor.
———————————————————————————————————————————

[ Exercise (Problem): In cat, Cat, CAT , where the objects are categories and the morphisms
are functors between them, we have the notion of quotient-objects of a fixed category C0,

[F : C0 → D]∼̇,

as equivalence classes of epi-morphic functors with a common domain (see Section II.3.3). How does
this definition reconcile with the one provided above for quotients of categories in this context?]
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3: Product and Coproduct Categories

• Def/Prop: (p.10 [?]) Given two categories C and D, the (binary) product category, is given by
applying the set/class-theoretic (Cartesian) product to the object and morphism collections:

C×̇D :=

{
Obj(C×̇D) := Obj(C)× Obj(D), Hom(C×̇D) := Hom(C)×Hom(D)

}
where for morphisms (f, α) : (A,A )→ (B,B) and (g, β) : (B,B)→ (C,C ),
composition is defined component-wise by:

(g, β)◦̃(f, α) := (g ◦ f, β ◦ α) : (A,A )→ (C,C )

and the identities are given by:
Id(A,A ) := (IdA, IdA ).

Associativity is inherited from the component compositions’ property.
———————————————————————————————————————————

Notes:
1.) The symbolism above is for display purposes here not really conventional. The dot on times
and tilde on composition are for differentiating the new symbols defined in terms of the old. In
context you will not see that.

2.) Also technically, we should list Π instead of ×, appealing to the following:

[Exercise: In cat, Cat, CAT, we have discrete-type limits also characterizing product objects
(product categories). Show that our new definition above satisfies being the object of a discrete
limit in cat, Cat, CAT.]

3.) We can upgrade (binary) to (arbitrary indexed) using that of the Cartesian operation.
———————————————————————————————————————————

• Def/Prop: Given two categories C and D, we define the (binary) coproduct category using
the set/class-theoretic (disjoint union) to the object and morphism collections:

Cq̇D :=

{
Obj(Cq̇D) := Obj(C)q Obj(D), Hom(Cq̇D) := Hom(C)qHom(D)

}
where composition is defined piecewise as:

g◦̃f :=

{ g ◦1 f, if f, g ∈ Hom(C) are compatible
g ◦2 f if f, g ∈ Hom(D) are compatible

Not defined otherwise

and identities are just collected. Associativity inherited; (binary) generalize-able via disjoint union
operation.
———————————————————————————————————————————

[Exercise: Show that our new definition above satisfies being the object of a discrete co-limit
in cat, Cat, CAT.]
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1. Qualifier Problems and Proofs

The following problems (except 1) come from Hawaii University’s 2016-2018 Qualifying Exams.
———————————————————————————————————————————–

1. Covariance of HA

2. Contravariant Hom Functors and Power Sets

3. Groupoids, Functors, Natural Transformations, etc.

4. Product and Coproduct in the Category of Pointed Sets

5. Coalgebras, Carriers, Terminal Objects

6. Category of Groups; Opposite Groups

7. Epimorphisms and Surjectivity in Sets and CRings

8. Coequilizers, Cokernels, and Epimorphisms

9. A Forgetful Functor and Its Isomorphic Counterpart in Grp

———————————————————————————————————————————–

>> Jump to Advanced Material
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Problem 1.) Prove Co-variance of the Covariant Hom Functor:

HA : C → Sets

HA(Z) := Hom(A,Z)

HA(f) :: Hom(A,X)→ Hom(A, Y ); ϕ 7→ f ◦ ϕ

where of course Z and f : X → Y range over objects and morphisms in C.
———————————————————————————————————————————–

Proof: Recall a functor F : C → D is called covariant if

(i) f ∈ HomC(X,Y ) =⇒ F (f) ∈ HomD(F (X), F (Y )) and

(ii) ∀f ∈ Hom(X,Y ), ∀g ∈ Hom(Y, Z), we have F (g ◦ f) = F (g) ◦ F (f).

We proceed to prove both of these.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(i) Let f ∈ Hom(X,Y ) be given. Then sinceHom(A,X) =: HA(X) andH(A, Y ) =: HA(Y ),

we have by definition that HA(f) : HA(X)→ HA(Y )

(
∈ HomSets(H

A(X),HA(Y ))

)
. �

(ii) Since the image of the functor is in the category Set, we know how to show equality of mor-
phisms. Particularly, we show that two morphisms have equal images on their domains.

Let f : X → Y , g : Y → Z, then:

HA(g ◦ f) : Hom(A,X)→ Hom(A,Z)

ϕ 7→ (g ◦ f) ◦ ϕ

HA(g) : Hom(A, Y )→ Hom(A,Z)

ψ 7→ g ◦ ψ and

HA(f) : Hom(A,X)→ Hom(A, Y ).

ϕ 7→ f ◦ ϕ

From the last two items, we get that for ϕ : A→ X, [HA(g) ◦HA(f)](ϕ) = g ◦ (f ◦ ϕ).
By the associativity axiom of categories:

(g ◦ f) ◦ ϕ = g ◦ (f ◦ ϕ)

and hence we conclude that [HA(g ◦ f)](ϕ) = [HA(g) ◦HA(f)](ϕ).

By arbitrariness of ϕ ∈ Hom(A,X), we get the desired equality of morphisms. �
>> Back to Section <<

———————————————————————————————————————————–
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Problem 2.)
(a) Let C be a category and let C be a fixed object of C. For an object A of C, let
FC(A) = HomC(A,C) be the set of morphisms in C from A to C. Show that FC gives
a contravariant functor from C to the category of Sets. In particular, for a morphism
f : A→ B of C, say what FC(f) is.

(b) Suppose C is the category of Sets and the C = {0, 1}. Show that for every set
A, there is a bijection between FC(A) and the set of subsets of A.
———————————————————————————————————————————–

Proof:
a.) In a long winded way, FC(f) describes the contravariant Hom functor we have seen: HA(·)
(dual to in problem 1), except with A switched with C.

To show FC defines a functor, we need to show it is a bi-map and that identities are preserved.

If we take Hom(A,C) and Hom(B,C) and try to create a morphism out of them using
f : A→ B, we see the only way is to pre-compose with f . That is, if ϕ ∈ Hom(B,C) then
ϕ ◦ f : A→ C. So we take as definition:

FC(f) : Hom(B,C)→ Hom(A,C)

FC(f) : ϕ 7→ ϕ ◦ f

for the second part of the bi-map; The first part was given to us (FC(A) := HomC(A,C)).

Taking f := IdA, we see then that F (IdA) : ϕ 7→ ϕ ◦ IdA = ϕ. So FC(IdA) = IdFC(A).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Proving contravariance amounts to showing:

FC(f) ∈ HomSets(FC(Y ), FC(X)) and FC(g ◦ f) = FC(f) ◦ FC(g),

where f : X → Y and g : Y → Z and the equality is for morphisms in Sets.

The first statement is clear since the variables were just switched in the definition.
Now, the second statement falls out as before noting that:

[FC(g ◦ f)](ϕ) = ϕ ◦ (g ◦ f) and [FC(f) ◦ FC(g)](ϕ) = (ϕ ◦ g) ◦ f .

and quoting associativity and arbitrariness of ϕ. �

—————————————————————————————————————

(Continues)
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b.) Decoding, WTS

∀A
(
∃fA : HomSets(A, {0, 1})

∼=−→ P(A)

)
where P(A) is just the power set of A.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Suppose A and ϕ : A→ {0, 1} are given. Then define:

fA(ϕ) := ϕ−1(1)

that is, the pullback of 1 (the subset of elements in A that map to 1 through ϕ). So varying ϕ
gives us different subsets in the power set.

We have existence, now WTS that each fA is bijective.

• Injectivity:
Supposeϕ,ψ ∈ Hom(A, {0, 1}) are such that fA(ϕ) = fA(ψ). Then we haveϕ−1(1) = ψ−1(1),
but this then determines ϕ−1(0) = ψ−1(0) since we just take complements. So we have ϕ ≡ ψ.

• Surjectivity:

Lastly, suppose a subset S ⊆ A is given. Then defining the function δS :=

{
1 on S
0 otherwise

shows ∃ϕ ∈ Hom(A, {0, 1}) such that fA(ϕ) = S and we’re done. �
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Problem 3.) For a group G, let CG be the associated groupoid, i.e. the category CG
that has exactly one element, denoted •G, whose morphisms are described as follows:
for each g ∈ G there is an isomorphism fg : •G → •G and the composition is defined
by fg ◦ fh = fgh using the group operation (i.e. HomCG(•G, •G) is isomorphic to G as
a group).

(a) Suppose G and H are groups. Show that giving a functor F : CG → CH is the
same as giving a group homomorphism ϕ : G→ H.

(b) Given two group homomorphisms ϕ,ψ : G→ H, say that ϕ and ψ are conjugate
if there is an h ∈ H such that for all g ∈ G:

hϕ(g)h−1 = ψ(g).

From the previous part, given ϕ : G→ H, there is corresponding Fϕ : CG → CH. Show
that ϕ and ψ are conjugate iff there is a natural transformation η : Fϕ → Gψ.
———————————————————————————————————————————–

Proof: First let’s summarize. We defined a groupoid (the categorization of a group) to be:

CG :=

{
Obj(CG) = {•G}, Mor(CG) = {iso′s fg : •G → •G} ∼= G

}
together with composition of morphisms defined as fg ◦ fh = fgh. We have then g 7→ fg is a
group iso.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a.) Suppose we are given a (covariant) functor F : CG → CH . This is a bi-map:

Obj(CG) = {•G}→{•H} = Obj(CH)

Mor(CG) = {iso′s fg : •G → •G}→{iso′s fh : •H → •H} = Mor(CH)

such that F (fg ◦ fh) = F (fg) ◦ F (fh) and F (f1G
) = f1H

.

But since the morphism collections are both isomorphic to G and H respectively and there is
only one possible map on the object sets, this says that F specifies a map between G and H which
preserves the group operations and identities, i.e. specifies a group homomorphism. �

—————————————————————————————————————

(Continues)
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b.) Let ϕ,ψ : G→ H be two conjugate group homomorphisms. Then:

∃h ∈ H, ∀g ∈ G, hϕ(g)h−1 = ψ(g) (F)

WTS this doubly implies existence of a natural transformation between the corresponding functors:

Fϕ, Fψ : CG → CH .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Since there is only one object in CG, we may specify a natural transformation of the functors with
one morphism. That is, we may define:

η : Fϕ → Fψ

η = {η•G}

such that the following diagram commutes for arbitrary fg:

Since η•G is a morphism in CH , we know it is an isomorphism and hence has a two-sided inverse.
So we can rewrite the commutativity conditions as:

∀fg, η•G ◦ Fϕ(fg) ◦ η−1
•G = Fψ(fg)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Taking (F) and passing to the groupoid statement via the isomorphism h→ fh etc. provides the
correspondence. �
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Problem 4.) Let Set∗ be the category of pointed sets, i.e. the category whose ob-
jects are pairs (X,x0) where X is a set and x0 is an element of X called the basepoint,
and whose morphisms (X,x0)→ (Y, y0) are functions f : X → Y such that f(x0) = y0.

(a) Given two pointed sets (X,x0) and (Y, y0), show that (X × Y, (x0, y0)) gives their
product in the category of pointed sets.

(b) Given two pointed sets (X,x0) and (Y, y0), define their wedge sum X ∨ Y to
be their disjoint union with the basepoints identified, i.e. the pair ((X q Y )/ ∼, [x0]),
where X q Y is the usual disjoint union, ∼ is the equivalence relation where x0 ∼ y0

and all other points are only equivalent to themselves, and (X q Y )/ ∼ denotes the
set of equivalence classes and [x0] the equivalence class of x0. Show that the wedge
sum is the coproduct in the category of pointed sets.
———————————————————————————————————————————–

Proof:

We have: Set∗ :=

{
Obj(Set∗) := {(X,x0) | X is a set and x0 ∈ X},

Mor(Set∗) := {f : X → Y | f(x0) = y0}
}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
a.) WTS the product in Set∗ is the discrete limit (L, λ) :=

(
(X × Y, (x0, y0)

)
, p1, p2

)
, where

p1 :
(
X × Y, (x0, y0)

)
→ (X,x0)

and
p2 :

(
X × Y, (x0, y0)

)
→ (Y, y0)

are the usual projection maps.

Well, aside from showing λ gives a natural transformation of diagrams, i.e. showing

λ = {p1, p2} ∈ Nat[Σ,Set∗](LΣ, D),

the other part of the problem is to show (L, λ) satisfies the terminal object universal property.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
(i.) Recall the set up for natural transformations of diagrams:

(Continues)
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4a.) i.) (Continued):
If we note the type of the diagram is (V e : 2, Ar : 2),

where the only arrows are identity arrows. Then defining the constant diagramD1 := LΣ : Σ 7→ L
and D2 := D : Σ→ Set∗ as above. We extract the commutativity conditions that need to be
satisfied by λ:

K :=
{
D(a) ◦ λv = λw ◦ LΣ(a) | For a ∈ Ar, where v = o(a), and w = e(a)

}
Again, there are only two arrows corresponding to identities IdX and IdY in the image of D, both
arrows map to IdL in the image of LΣ, so we rewrite:

K = {IdX ◦ p1 = p1 ◦ IdL, IdY ◦ p2 = p2 ◦ IdL}

and these equalities hold because both images in each case are respectively: (X,x0) and (Y, y0). �

This is very technical but easy to prove in the end, save the last version of K for easier argu-
ments later!
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4a.) ii.) Now for the terminal universal property. Taking any other candidate cone of the same
type, i.e. (P, π1, π2), we want to show:

∃!fP ∈ HomSet∗(P, L), such that π1 = p1 ◦ fP and π2 = p2 ◦ fP

Recall that L := (X × Y, (x0, y0)) and suppose P := (P, p0), then define the map:

fP : (P, p0)→ (X × Y, (x0, y0))

via

fP
(
(p, p0)

)
:=

((
π1(p), π2(p)

)
,
(
π1(p0), π2(p0)

))
.

It follows that:
pi ◦ fP ((p, p0)) = (πi(p), πi(p0)) = πi((p, p0))

so by arbitrariness of (p, p0) ∈ (P, p0), we have πi = pi ◦ fP as pointed-set morphisms.

Lastly, if gP : P → L were another such map making πi = pi ◦ gP then we’d have pi ◦ fP = pi ◦ gP
for not just one, but (both) projections. Hence fP = gP . �
—————————————————————————————————————

(Continues)
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4b.) Now we are talking about coproduct in Set∗.

We wish to prove (L̃, λ̃) :=

((
(X q Y )/ ∼, [x0]

)
, i1, i2

)
is the coproduct in Set∗,

where i1 : (X,x0)→
(
(X q Y )/ ∼, [x0]

)
and i1 : (Y, y0)→

(
(X q Y )/ ∼, [x0]

)
are inclu-

sion maps that have been post-composed with the quotient map for the relation, i1 := π ◦ ιX etc..

We skip showing candadacy as a co-cone of the appropriate type (Σ as before gives the type).

All the work we did in part (a) suggests that given another such candidate (C, µ1, µ2), we show

existence and uniqueness of a pointed-set morphism from f̃C : L̃→ C that makes µj = f̃C ◦ ij .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Recall that L̃ :=

(
(X q Y )/ ∼, [x0]

)
and suppose C := (C, c0), then define the map:

f̃C :
(
(X q Y )/ ∼, [x0]

)
→ (C, c0)

via

f̃C
(
([z], [x0])

)
:=

{(
µ1

(
π−1([z])

)
, c0

)
, if π−1([z]) ∈ X(

µ2

(
π−1([z])

)
, c0

)
, otherwise

where µ1 : X → C and µ1 : x0 7→ c0 and similarly µ2 : Y → C and µ2 : y0 7→ c0.

Also, π is the quotient map.

If we pre-compose with the ij’s we get:

f̃C ◦ i1(x, x0) =
(
µ1(x), c0

)
= µ1((x, x0)) and f̃C ◦ i2((y, y0)) =

(
µ2(y), c0

)
= µ2((y, y0))

for each element in (X,x0) and (Y, y0) respectively. And hence by arbitrariness of the elements
follows that the commutativity conditions are satisfied.

As before, uniqueness follows from the commutativity conditions. We equate across the µj ’s and
then we have equality of the morphisms over all elements in the quotient.

Final note, f̃C is a well-defined map since all equivalence classes besides [x0] are singleton sets
and even ([x0], [x0]) and ([y0], [x0]) both go to (c0, c0). �
———————————————————————————————————————————–
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Problem 5.) Given a category C and a functor F : C → C, a coalgebra of F is a pair
(A,α) such that A is an object of C and α : A→ F (A) is a morphism in C. The
object A is called the carrier of the coalgebra (A,α). A morphism (A,α)→ (B, β)
of coalgebras of F is a morphism f : A→ B in C such that the following diagram
commutes:

(a) Show that if A is a carrier of a coalgebra for F , then so is F (A).

(b) Suppose (Z, ζ) is a terminal object in the category of coalgebras of F . Show
that ζ is then an isomorphism.
———————————————————————————————————————————–

Proof:
We have for a given endo-functor F : C → C, the category:

CoAlg(F ) :=

{
Obj(CoAlg(F )) :=

{(
A,α) | A ∈ Obj(C), α ∈ Hom(A,F (A))

}
,

Mor(CoAlg(F )) := {f : A→ B | F (f) ◦ α = β ◦ f}
}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a.) Suppose A is a carrier of a coalgebra. Then there exists a morphism α : A→ F (A) making
(A,α) an object in CoAlg(F ).

Since F is assumed covariant, it follows then that F (α) ∈ Hom
(
F (A), F (F (A))

)
and so(

F (A), F (α)
)
∈ Obj(CoAlg(F )). Hence F (A) is also a carrier of a coalgebra. �

—————————————————————————————————————

b.) Let
(
Z, ζ

)
be terminal in CoAlg(F ). Then considering by part (a) that

(
F (Z), F (ζ)

)
is also a coalgebra, we know there exists exactly one morphism: fF (Z) :

(
F (Z), F (ζ)

)
→ (Z, ζ).

(Continues)
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6b.) (Continued):
Opening up the definition of CoAlg(F ) morphisms, we have there exists exactly one

fF (Z) ∈ HomC(F (Z), Z)

making the diagram below commute:

From the commutativity condition above, together with the fact that our functor is covariant, we
get:

F (fF (Z) ◦ ζ) = ζ ◦ fF (Z) (F)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Now, fF (Z) ◦ ζ ∈ HomC(Z,Z) and as well, IdZ ∈ Hom(Z,Z) by axiom. By the terminal
object property, we know there is only one morphism fZ : (Z, ζ)→ (Z, ζ) ∈Mor(CoAlg(F )).
So as coalgebra morphisms,

fF (Z) ◦ ζ = IdZ

Combining this result with (F), we get:

ζ ◦ fF (Z) = F (IdZ) = IdF (Z) (By functor axiom).

Thus we have shown existence of a two sided inverse for ζ - making it an isomorphism. �
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Problem 6.) Let Grp denote the category of groups and let F : Grp→ Grp send a
group G to its opposite group Gop (i.e. the group whose underlying set is G, but with
the operation given instead by g ∗ h := hg, where the product hg is the usual product
in G).

(a) For a group homomorphism ϕ : G1 → G2, what is F (ϕ)? Show that F is a functor.
Is it covariant or contravariant?

(b) Show that F is naturally isomorphic to the identity functor IdGrp : Grp→ Grp.
[Hint: you may want to first show that the map G→ Gop that sends g 7→ g−1 is an
isomorphism.]
———————————————————————————————————————————–

Proof:
a.) We wish to define the image of the morphism ϕ in either Hom(Gop

1 , G
op
2 ), pushing F towards

covariance, or in Hom(Gop
2 , G

op
1 ), towards contra-variance.

But we have ϕ(g ∗ h) := ϕ(hg) = ϕ(h)ϕ(g) = ϕ(g) ∗ ϕ(h). So ϕ ∈ Hom(Gop
1 , G

op
2 ).

So take F (ϕ) := ϕ.

To show F is a covariant functor then amounts to showing preservation of composition and identities.

Givenϕ : Gop
1 → Gop

2 andψ : Gop
2 → Gop

3 , we have by definition F (ψ ◦ ϕ) = ψ ◦ ϕ = F (ψ) ◦ F (ϕ)
and F (IdG) = IdF (G), since F (G) = Gop = G as sets. �
—————————————————————————————————————

b.) Following the hint, WTS the maps ηG : G→ Gop sending g 7→ g−1 are isomorphisms.
But this is easy since inversion is involutive. And ηG is a homomorphism of groups since:

ηG(gh) = (gh)−1 = h−1g−1 = ηG(g) ∗ ηG(h) and ηG(1G) = 1−1
G = 1G = 1Gop

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

This yields η : F
∼=−→ IdGrp, where η = {ηG}G∈Grp and for each morphism ϕ : G1 → G2 the

following holds:

since both sides of the commutativity conditions have image ϕ(g)−1. �
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Problem 7.) A morphism π : A→ B in a category C is called an epimorphism if for
every object C in C, the induced function:

π∗ : HomC(B,C)→ HomC(A,C)

ϕ 7→ ϕ ◦ π
is injective. (This notion is meant to generalize that of a surjective function.)

(a) Show that in the category Set of sets, a morphism π is an epimorphism iff π
is surjective.

(b) Show that for the category CRing of commutative rings (with identity, and with
ring homomorphisms that preserve the identity), if R is an integral domain that is not
a field and F is its field of fractions, then the natural map R→ F is a non-surjective
epimorphism.

>> Back to Section <<
———————————————————————————————————————————–

Proof:
a.) (⇐) : Suppose we are in Set. Let π ∈ Hom(A,B) be a surjective set map and take two
other maps ϕ,ψ ∈ Hom(B,C) such that:

ϕ ◦ π = ψ ◦ π (∈ Hom(A,C))

This means that:
∀a ∈ A, ϕ ◦ π(a) = ψ ◦ π(a)

In particular, since ∀b ∈ B, ∃a ∈ A, such that π(a) = b, we can choose a pre-image representative
for each b and throw away the other redundant equalities above to get:

∀ba ∈ B,ϕ(ba) = ψ(ba).

But clearly this says we have ϕ = ψ as morphisms in Hom(B,C). By arbitrariness of ϕ,ψ, we
get that π∗ is injective and hence π an epic. �
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
(⇒) : Suppose now towards contradiction, that π is an epic but is not surjective. Then

∃b0 ∈ B, ∀a ∈ A, π(a) 6= b0.

If we have ϕ,ψ as above, requiring that ϕ ◦ π = ψ ◦ π is not enough to have ϕ(b0) = ψ(b0), let
alone to have equality on B\π(A). As we will show, there always exists two morphisms that differ
on the complement of the image, but agree on the image π(A):

ϕ(b) :=

{
1, if b /∈ π(A)
b, otherwise

and ψ(b) :=

{
0, if b /∈ π(A)
b, otherwise

Not having total equality over B makes ϕ 6= ψ and hence π∗ is not injective. Contradiction. �
—————————————————————————————————————

(Continues)
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7b.) Switch categories to CRing (commutative rings with 1R and identity preserving ring hom’s).

We have a ring R that is an integral domain but is not a field, so there are no zero divisors
and there exists elements that are not invertible under multiplication.

[Recall: F = {r
s
| r ∈ R, s ∈ R− {0}} together with fraction operations +, ∗ and identity ele-

ments. For more rigorous definition, see Dummit [?] Thm 15 (p.261). The fact that R is an integral
domain is used to show the divisors, s, are all nonzero elements here.]

The so called “natural map”:

n : R→ F via n(r) :=
r

1

is actually aCRing-morphism since 1 7→ 1
1

and n(r ∗ s+ t) = r∗s+t
1

= ... = n(r) ∗ n(s) + n(t).

WTS this map is a non-surjective, epimorphism.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Note that since there exists non-invertible elements in R, n : R→ F is non-surjective
(we don’t have a correspondent for some 1

r0
back in R.)

Now, let ϕ,ψ ∈ Hom(F, Z) for arbitrary Z ∈ obj(CRng), be such that:

ϕ ◦ n = ψ ◦ n.

Then this gives:

∀r ∈ R, ϕ
(r
1

)
= ψ

(r
1

)
F

But, ϕ and ψ both have domain F , so we know the images of all fractions exist. So multiplying
both sides ofF on the left (or right) by the element ϕ(1

r
)ψ(1

r
) (assuming r 6= 0) and using axioms

of commutative ring homomorphisms yields:

∀r ∈ R− {0}, ψ
(1
r

)
= ϕ

(1
r

)
So we now have that ϕ = ψ, since they agree on all of R and all of 1

R−{0} , they agree on all of

F –this can be seen by taking products r ∗ 1
s

and splitting the image of both maps via the ring
homomorphism property and comparing results. So the natural map is an epic. �

54



Section III.1: Qualifier Problems and Proofs

Problem 8.) Let C be a category and let f, g : X → Y be two morphisms in C. This is
diagramatically written as:

A coequilizer of f and g is an object Z of C equipped with a morphism π : Y → Z
such that the diagram:

commutes (i.e. π ◦ f = π ◦ g) and satisfying the following universal property : for every
morphism π′ : Y → Z′ with π′ ◦ f = π′ ◦ g, there exists a unique morphism p : Z → Z′

such that the following diagram commutes:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(a) Let Ab denote the category of abelian groups. Show that the coequilizer of two
homomorphisms f, g : A→ B in Ab is given by the quotient map:

π : B → B/Im(f − g)

(where Im(f − g) denotes the image of f − g), i.e. the quotient map:

π : B → coker(f − g)

(b) Show that if π : Y → Z is the coequilizer of some pair f, g : X → Y in some cate-
gory C, then π is an epimorphism.
—————————————————————————————————————
The only reason abelian is necessary is so that the quotient is actually an object in the category.

Proof:
a.) It suffices to show

(
B\Im(f − g), π

)
satisfies the co-limit candidacy requirements (for type

coequilizer) and satisfaction of the associated initial object universal property (we did a similar
proof for products and coproducts before in Problem 4).

(Next Page)
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Proof (Continued):

8a.)
Coequilizer Candidacy:

Recall f, g : A→ B and we have the pair

(
B\Im(f − g), π : B → B\Im(f − g)

)
and we

just need to show π ◦ f = π ◦ g (as morphisms in Ab–i.e. as group homomorphisms).

Accordingly, fix a ∈ A, then:

π ◦ f(a) = f(a) + Im(f − g)

= f(a)−(f(a)− g(a)) + Im(f − g) [adding by an element of Im(f − g)]

= g(a) + Im(f − g)

= π ◦ g(a).

By arbitrariness of a ∈ A, the result follows. �
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Initial Object Universal Property:
Let (C, µ : B → C) be another such candidate (i.e. such that µ ◦ f = µ ◦ g).

Then WTS there exists a unique morphism αC : B\Im(f − g)→ C with µ = αC ◦ π.
Define:

αC : B\Im(f − g)→ C via αC(b+ Im(f − g)) := µ(b).

Clearly µ = αC ◦ π. And this map is actually well-defined since if we choose another coset repre-
sentative:

αC
(
b+ (f(x)− g(x)) + Im(f − g)

)
= µ

(
b+ f(x)− g(x)

)
= µ(b) + µ(f(x))− µ(g(x)) = µ(b)

since µ is a group homomorphism and by the candidacy commutativity condition.

Lastly, WTS uniqueness. If βC is another map satisfying µ = βC ◦ π, equating across µ then
gives:

αC ◦ π = βC ◦ π

which gives αC = βC since quotient maps are surjective. �
—————————————————————————————————————

(Continues)
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8b.) WTS if π : Y → Z is the coequilizer of two morphisms f, g : X → Y in an arbitrary cate-
gory, then π is an epimorphism.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Consider the following figure for arbitrary W ∈ obj(C):

Suppose ϕ,ψ ∈ Hom(Z,W ) are such that ϕ ◦ π = ψ ◦ π.

Then we have:

(ϕ ◦ π) ◦ f = (ϕ ◦ π) ◦ g and (ψ ◦ π) ◦ f = (ψ ◦ π) ◦ g

due to associativity and the fact that π gives us π ◦ f = π ◦ g.

This says
(
W,ϕ ◦ π

)
and

(
W,ψ ◦ π

)
are candidates for the coequilizer-type colimit. By the

(initial object) universal property that
(
Z, π

)
has then, we know there exists exactly one morphism

coming out of the coequilizer and pointing to each of the candidates, factoring each of their mor-
phisms.

More formally, we have:

∃! αϕ◦π ∈ Hom(Z,W ) such that (ϕ ◦ π) = αϕ◦π ◦ π

and
∃! αψ◦π ∈ Hom(Z,W ) such that (ψ ◦ π) = αψ◦π ◦ π

Reiterating, if we look at the collection:

{β ∈ Hom(Z,W ) | ϕ ◦ π = β ◦ π},

we know by hypothesis that ϕ and ψ are in this collection and so by uniqueness they must be
the same. That is, ϕ = ψ and by arbitrariness of these morphisms and W we have that π is an
epimorphism. �

57



Section III.1: Qualifier Problems and Proofs

Problem 9.) Let F : Grp→ Set be the forgetful functor sending a group to its under-
lying set. Let G : Grp→ Set be the functor given by

X 7→ HomGrp(Z, X)

sending a group X to the set of group homomorphisms from the additive group of
integers to X.

a.) Show that G is indeed a covariant functor.

b.) Show that F and G are naturally isomorphic (i.e. show that F is represented
by Z.
—————————————————————————————————————

Proof:
a.) G is nothing more than the covariant hom functor HZ indexed by Z ∈ Obj(Grp). We’ve
proven this functor is covariant in Problem 1. �
—————————————————————————————————————

b.) Recall:
F : Grp→ Set; and G : Grp→ Set;

X 7→ |X| X 7→ Hom(Z, X)

We wish to show there exists a natural isomorphism between these two functors.

Accordingly, define:
η : F → G;{

ηX : |X| → Hom(Z, X); x 7→ (fx : 1 7→ x)

}
X∈Obj(Grp)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
We need to show (i) this map satisfies the proper commutativity conditions and (ii) that each ηX
is an isomorphism (in Set).

i.) Let X,Y ∈ Obj(Grp) and f : X → Y be arbitrary. WTS

G(f) ◦ ηX = ηY ◦ F (f) ∈ HomSet(|X|,HomGrp(Z, Y ))

We have for a given x ∈ |X| that: G(f) ◦ nX(x) := G(f) ◦ (fx : 1 7→ x) := f ◦ fx.

As well, ηY ◦ F (f)(x) := ηY ◦ f(x) := ff(x) : 1→ f(x) = f ◦ fx.

Arbitrariness of x,X, Y, f finishes this. So we indeed have a natural transformation. �
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(Continues)

58



Section III.1: Qualifier Problems and Proofs

9b.) (Continued):

ii.)
Injective:

Suppose for arbitrary X ∈ Obj(Grp) and x, y ∈ |X| are such that ηX(x) = ηX(y). Then:

(fx : 1 7→ x) ≡ (fy : 1 7→ y)

And in particular this says x = fx(1) = fy(1) = y, so that x = y. �

Surjective:

For any given g ∈ Hom(Z, X), there exists x := g(1) ∈ |X| such that

ηX(x) = (fg(1) : 1 7→ g(1)) ≡ g

∴ We have shown F is isomorphic to a covariant hom functor indexed by Z, therefore the forgetful
functor, F , has representing object Z. �
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2. Advanced Material

Subsection Contents:

1. On Homological Algebra
———————————————————————————————————————————–

>> Jump to References
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Section III.2: Advanced Material

1: Some Tools for Homological Algebra:
In this section, we aim to develop the definition of an nth-homology object. Such objects are certain
quotients sitting inside the nodes of a chain complex. If a homology object is zero, the sequence is
exact at the node it lives in. It is of course the nonzero homology objects we find interesting. Very
briefly, given a base category, one assigns chain complexes to its objects and the resulting homology
sequences characterize those objects [speculative statement]. For example, in [?], topological spaces
with a cover are assigned sheaves of abelian groups, whereby cochains, cocycles, and coboundaries
are developed in the nodes of sequences. And this yields the cohomology of the topological space.
None of the references, nor wikipedia specifies this connection, it seems diagram chasing is the more
important aspect. Either way...

On (p.111 [?]), Schubert states: “Abelian categories are the proper framework for the study of
exact sequences. They are the foundation of homological algebra... Ab, RMod, ModR are exam-
ples of abelian categories.”
———————————————————————————————————————————–

Switching to Mac Lane’s text now...

• Def: (p.28 [?]) An Ab-category (also called preadditive), is one such that:

i.) ∀A,B, ∃+AB and 0AB : A→ B making
{
Hom(A,B),+AB, 0AB

}
an abelian group.

ii.) We require that the composition in C is “bilinear” with respect to each +AB. That is,

∀f, g ∈ Hom(A,B), ∀h ∈ Hom(B,C), h ◦ (f + g) = (h ◦ f) + (h ◦ g) and

∀f, g ∈ Hom(B,C), ∀h ∈ Hom(A,B), (f + g) ◦ h = (f ◦ h) + (g ◦ h).
———————————————————————————————————————————–

• Def: (p.194 [?]) Given two objects A and B in an Ab-category, a biproduct object,
denoted A⊕B, is simultaneously a product and a co-product with the compatibility conditions:

i.) p1 ◦ i1 = IdA, p2 ◦ i2 = IdB, and

ii.) i1 ◦ p1 = IdA⊕B, i2 ◦ p2 = IdA⊕B.

———————————————————————————————————————————–

• Def: (p.196 [?]) An additive category is an Ab-category which has a zero object 0 ∈ Obj(C)
(not just zero morphisms 0AB : A→ B in each Hom collection), and a biproduct, A⊕B for each
pair of objects.
———————————————————————————————————————————–

(Continues)
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• Def: (p.197 [?]) If C and D are Ab-categories, an additive functor, F : C → D, is one such
that:

∀A,B, ∀f, g ∈ Hom(A,B), F (f + g) = F (f) + F (g),

where of course, the addition structures are in HomC(A,B) and HomD(F (A), F (B)) respec-
tively.
———————————————————————————————————————————–

• Def: (p.198 [?]) An abelian category is an additive category such that:

i.) Every morphism f : A→ B has a kernel and a cokernel and

ii.) Every monic is a kernel and every epic is a cokernel.
———————————————————————————————————————————–

We have now set the stage. Enter sequences and exactness definitions...

———————————————————————————————————————————–

• Def: (Prop 1, p.199-200 [?]) Given a morphism f : A→ B in an abelian category, define:

im(f) := ker(coker(f)) and coim(f) := coker(ker(f)).

Then, up to isomorphism, we have the unique factorization of any morphism given by:

f = im(f) ◦ coim(f). �

———————————————————————————————————————————–

• Def: (p.200 [?]) A composable pair of morphisms:

A
f−→ B

g−→ C

is exact at B when im(f) ≡ ker(g) (as subobjects of B).
———————————————————————————————————————————–

• Def: An exact sequence in C is a sequence of composable morphisms:

...→ An−1

fn−1−−→ An
fn−→ An+1 → ...

that is exact at every object An. In particular, a short exact sequence is an exact sequence of
the form:

0→ A
f−→ B

g−→ C → 0,

where 0 is the zero object in our abelian category.
———————————————————————————————————————————–

(Continues)
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• Def: (p.201 [?]) An exact functor, F : C → D is one that preserves all finite limits and all finite
colimits (in particular it preservers kernels and cokernels):

F
(
ker(f)

)
= ker

(
F (f)

)
and F

(
coker(f)

)
= coker

(
F (f)

)
.

It hence preserves images, coimages, and carries exact sequences to exact sequences [Exercise].
The weaker notions of left-exact and right-exact functors are defined as preserving only finite
limits OR finite colimits respectively.
———————————————————————————————————————————–

Now, for the good part.

• Def: (p.202 [?]) In an abelian category C, a chain complex is a sequence of composable mor-
phisms in C, more traditionally denoted:

...→ Cn+1

∂n+1−−−→ Cn
∂n−→ Cn−1 → ...

such that ∂n ◦ ∂n+1 = 0Cn+1Cn for every n.
———————————————————————————————————————————–

• Def (My Own): Suppose f : A→ X and g : B → X are given such that f ≤ g. We wish
g/f to be a quotient object of B, but it needs to be explicitly in terms of f and g. So let us define:

g/f := coker(ϕ) : B → K̃ϕ.

where ϕ : dom(f)→ dom(g) is the unique morphism such that f = g ◦ ϕ. Let this specify up
to equivalence class the epic obtained. Note: In other theories (abelian groups etc.), cokernel is

given by K̃ϕ := B/ϕ(A).
———————————————————————————————————————————–

• Def: (p.202 [?]) In the context of a chain complex, we define the nth-homology object by:

HnC := ker(∂n)/im(∂n+1),

where the symbology on the right hand side denotes a quotient of subobjects of Cn.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Elaborating:

ker(∂n) : K∂n → Cn and im(∂n+1) := ker(coker(∂n+1)) : Kcoker(∂n+1) → Cn

and since kernels are monics, each gives rise to a subobject (passing to the equivalence classes).
[Exercise: Show im(∂n+1) ≤ ker(∂n).] Now apply the definition of the quotient of subobjects.
———————————————————————————————————————————–

Lastly, I want to include one more definition:
• Def: (p.202 [?]) We can define a morphism of short exact sequences as a family of morphisms
in C between corresponding nodes of the sequences such that the resulting diagram between them
commutes. The collection of all short exact sequences in a category, together with all such mor-
phisms and the induced composition defines a category we call Ses(C).

[3:13 am. 10.17.2020. KTS]
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