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1: Introduction

In this work, we develop a particular construction, relating subgroups of the
fundamental group of a “nice” space to that of permutation matrices on a vector
space with dimension corresponding to that of the degree of the associated con-
nected covering space. By nice, we mean of course connected, locally path-connected,
and semai-locally simply connected.

Section 2 proceeds to define most of the necessary terminology from algebraic
topology. Section 3 defines group actions and the action of the fundamental group
on the universal covering space, and then lists an important relationship between
classes of covering spaces and conjugacy classes of subgroups of the fundamental
group. Section 4 builds on this with a quick discussion and delivers the final defi-
nition of the monodromy representation.

Section References:

Each section was heavily inspired (if not transcribed at points) by the texts listed
in the bibliography. For the interested reader, these are the page ranges we used,
more direct citations can be found throughout.

> 2: Miranda (pg.84-85) and Hatcher (p.25-78).
> 3: Miranda (pg.75-85), Hatcher (p.28-70), Dummit (p.574), and Denecke (p.40).
> 4: Miranda (86-87).
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2: Preliminaries in Algebraic Topology

<< 2.1: The Fundamental Group of a Topological Space >>

e Def: A (finite) path in a topological space X is a map: a : [0,1] — X.
We call a(0) and a(1) the endpoints of . In particular, when the endpoints
are the same, we call o a loop in X and usually use the symbol ‘4’ instead.

e Def: Given two paths a,3:[0,1] = X with the same starting and ending
points, we define a linear homotopy from a to 3 relative to fixed endpoints
«(0) and (1) by a map:

H :[0,1] x [0,1] - X;  H.t) = H(s,t) := a(t) + (B(t) — a(t)) - s.

More generally, homotopies between paths are just continuous deformations of
one into the other (end points not necessarily fixed). This can be upgraded to
homotopies of maps of topological spaces, but we don’t need that much here.

Informally, t is the time or arclength parameter and s is the family or transverse
parameter. Notice that above, when s = 0 and s = 1 respectively, we have the
family members a(t) and [(t).

B3

e Def: We can define a relation ‘~’ by existence of homotopies between paths:
(e ~ B) <> IH (s, t) (a homotopy between a and 3 relative to fixed endpoints)

This relation turns out to be an equivalence relation on the set of all paths in X.
Hence it partitions {paths in X} into equivalence classes, each of which we denote
by say [a].
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e Defs: We are concerned with encoding “holes” in the topological space into alge-
braic quantities, one of the ways this is accomplished is by looking at equivalence
classes of loops.

q
B3

For example, a and [ in this figure can be deformed into eachother without the
hole in the space creating a discontinuity for the homotopy map; v is so called
contractible since it can be deformed to the constant loop. Since neither o nor
[ are contractible, they are inherently members of a different homotopy class than
7.

Note however that the combined path going once around ~ at double the speed
and then once around « at double the speed is a path in the same equivalence
class of as a. This is known as the path product: + - a (listed contrary to our
composition of functions intuition).

The path product in general is a piecewise-defined path, where each portion
is a re-parameterized version of one of the constituent paths, meant to satisfy the
original definition we gave over the interval [0, 1].

We define the reverse path, denoted —a or & as the original path, precom-
posed with a time-reversal homeomorphism, say @(t) =1 — t.

e Def: It can be shown (pg.26 [I]) that the set of equivalence classes of loops
base-pointed at ¢ € X forms a group structure with path product being upgraded
to the operation, i.e.

[a] % [B] := [ - 3], (well-defined and associative),

the identity is the constant loop class 1 := [q] of the basepoint, and we get inverses
of elements via the reverse path classes [a]~! := [—«]. This group is called the
(first) fundamental group of X at g and is denoted m;(X, q). There are n'®

fundamental groups as well, we don’t use them here.
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<< 2.2: Some Spatial Properties >>

The following properties are important for developing the universal cover in the
next section.

e Def: A topological space X is connected if it is not the disjoint union of two
other topological spaces. Within a single topology, a connected subset is one such
that it is not a disjoint union of two subspaces of X.

e Def: A topological space X is path-connected if for any two points in X, there
exists a continuous path between them. A space is locally path-connected if for
every point p € X, there exists a neighborhood NV, such that [V, is path-connected.

e Def: Simply connected spaces are topological spaces with trivial fundamental
group, i.e. m(X,q) = {e} (there are no holes so every loop is contractible).

e Def: For a continuous map of pointed-topological spaces ¢ : (X, q) = (Y, ¢(q)),
we define an induced map:

e« (X, q) = (Y, 0(q));  @([7]) == [p(¥)]-

e Def: Semilocally simply connected spaces are such that for each point
p € X, there exists a neighborhood N, such that the inclusion-induced map
(N, p) — m (X, p) is trivial (pg.63 [1]).
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<< 2.3: Topological Covering Spaces, TopCov(Y) >>

e Def: Given a topological space Y, amap g : X — Y is called a covering map,
with base space Y and total space X if Vq € Y, there exists a neighborhood
N, C Y such that the pre-image g~*(N,) of the neighborhood is a disjoint union of
subsets of X each of which maps homeomorphically to Y via g.

Covering spaces are jokingly thought of as stacks of pancakes hovering above an-
other pancake. This is of course a loose interpretation of covering spaces viewed
only as restricted to the fiber “above” a disk.

S
®X

lg

A more concrete example of a covering space is given by R — S! or by C — C/L
(reals covering the circle or the complex plane covering the torus in identification
space).

Nq-

e Time to define the morphisms. Given two covering spaces over the same base
space, namely g1 : X7 — Y and g2 : X2 — Y, a covering space morphism is
just a continuous map ¢ : X7 — X3 making the following diagram commute:

¢
Xi — Xo

g1 = 8,00
gl\ /gz 1= &2°
Y

In the event that ¢ is a homeomorphism, we say ¢ is a covering space iso-
morphism or deck transformation. The latter term appealing to the notion of
shuffling the hovering pancakes.
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e Def: With objects as covering spaces (¢ : X — Y) and morphisms as covering
morphisms (¢ above), together with the identity morphisms and composition of

continuous maps, we obtain a category called TopCov(Y') (interested reader can
check).

In categorical language, for certain special topological spaces Y, we have exis-
tence of initial objects f : U — Y in TopCov(Y). That is, f : U — Y has the
property that every other object in the category has in incoming morphism from it.

Bringing the discussion back to algebraic topology proper:

e Def/Prop: (See pg.68 [1]) For a connected, locally path-connected and semilocally
simply connected topological space Y, there exists a simply connected covering
space f : U — Y, called the universal covering space of Y. This covering
space satisfies the following universal property:

For every other covering space g : X — Y, there exists a covering space mor-
phism ¢ : U — X (also a covering space) such that f = goy. This property makes
it unique up to covering space isomorphism (as the reader can check).

! \,\

X, X; .. D

N

Before we move on to getting at the main attraction, we mention two more things
that only really fit here:

> If the base space has additional, local properties, they usually get inherited in
the total space via the fact that covers are local homeomorphisms. (See wikipedia’s
“Covering Space” article [5]). For example, a Riemann Surface lifts to a R.S.

> Path-Lifting Property (p.60 [1]): Given a point and a loop in the base space,
there exists a unique path starting at each point in the fiber.
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3: Acting Fundamental Groups on Universal Covers

<< 3.1: Group Actions >>

e Def: Let G be a group and X a topological space. We define an action of
G on X to be a map:

0:Gx X — X such that:

1.) Vg,h € G,Vp € X we have 0(gh,p) = 0(g,0(h,p)) and
2.) Vp € X we have 0(e,p) = p, where e is the identity of the group.

We also denote g x p := 6(g, p).

e Def: Given such an action and a point p € X, we define the G-orbit of p
or simply the orbit of p to be the set:

Gxp={gxp|ge€ G},

that is, the collection of images of p with respect to the action of different group
elements.

e Def: We can define a relation, ~, on X via orbit inclusion. That is,

Vp,g € X, (p~q) < (p€EG=*q).

This turns out to be an equivalence relation and hence partitions the space into
orbits. We call X/~ the orbit space with respect to G. Alternatively, this is
denoted X/G.

We can give X/G the quotient topology (and many other properties X has) via the
natural quotient map 7w : X — X /G (see p.75 Miranda).
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<< 3.2: On Universal Covers >>

Let f:U — Y be the universal covering space for Y and let G := m1(Y,q)
at some basepoint ¢ € Y. Then, selecting a pre-image p € f~1(q), we obtain an
action G X U — U via:

(%) ] *w = = (f 0 aup)(1)

where a is a path from u to p in U, —(f o a) is a reverse path in the base space

from f(p) to f(u), and —(f o a) is the unique lift of —(f o «) starting at (1),
which is the endpoint of the unique lift of v starting at p. See the figure below.

Note especially that u' € f~1(f(u)), so that the fibers are preserved under the
action.
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<< 3.3: A Galois Correspondence >>

The action of the fundamental group on its space’s universal cover described above
gives rise to a type of Galois correspondence between:

isomorphism classes of conjugacy classes
{path—connected coverings} > { of subgroups },

g: X =Y H < m(Y,q)

in the case of a path connected, locally path-connected, and semilocally simply con-
nected base space Y (when the base points are ignored in the isomorphisms)
[See (Theorem 1.38, p.67 [1]) then see (pg.85 [1])].

There is too much to prove here for where we are trying to go with the theory,
so we defer the proof of the correspondence to the references (note that induced
maps are used). However, there are a couple things worth mentioning:

1.) The reason for the terminology used above is the way in which the correspon-
dence happens. It resembles the way subfields of splitting fields of polynomials
correspond to the subgroups of the poly’s automorphism group (see pg.574 Dum-
mit [2]), in particular note the inclusion reversal.

Consider the action of the trivial subgroup of m(Y,q) on the universal cover
f: U — Y. There is one element [constant loop] € H < m (Y, q) and as one can
see in the above figure, this makes the action fix every point in U since the lift of
the reversed path —f o «a starts at p and ends back at u. Hence the orbits are all
just singleton sets, i.e. the covering space corresponds to U/[c| = U — Y.

On the other extreme, considering instead the action of the entire group yields
the orbits to be the entire fiber above each point in Y, so we actually get the orbit

space is homeomorphic to Y. So the covering space looks like Y — Y.

Lastly, there is a precise notion of Galois connection given in (pg.40 of [3])
if one wanted to tie these ideas together better!

2.) More important for our needs is a result of this correspondence:

(Continues)
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e Prop: Let g: X — Y be a covering space such that Y is “nice enough” and
H < m(Y,q) =: G its corresponding subgroup, then:

deg(g) = [G : H].

Here, degree is the number of preimages of g at any giwen point in Y .

Proof: [See Prop 1.3.2 (p.61) in [1]] A

We are now ready for the final construction.
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4: The Monodromy of (Finite Degree) Covering Spaces

Etymologically speaking, according to wikipedia:

“IMJonodromy is the study of how objects from mathematical analysis,
algebraic topology, algebraic geometry and differential geometry behave as
they “run round” a singularity. As the name implies, the fundamental
meaning of monodromy comes from “running round singly”. It is closely
associated with covering maps and their degeneration into ramification”[5].

As we saw in the previous section, the degree of the connected covering map cor-

responded to the index of the Galois-related subgroup. We take advantage of this
and define a new construction below.

/<</
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<< The Monodromy Representation Construction >>

Suppose for nice enough Y with connected covering space g : X — Y, that
d:=deg(g) = [71(Y,q) : H| is finite.

Then denote the fiber over the basepoint ¢ by: g7 *(q) = {z1, ..., Ta}.

If we choose [v] € m1(Y, q), we can lift v uniquely to d different paths in the
total space starting at each z;. Label these {71,...,74}. The collection of end-
points of each of these paths again forms the fiber g71(q), which labelling correctly
gives:

{7(1),.,7a(1)} = A{xs01)s s Zo(a)}

for some permutation o € Sy (the symmetric group).

e Def: The monodromy representation of a (finite degree), connected cover-
ing space g : X — Y, for Y “nice enough” and Galois-correspondent H < (Y, d),
is just the group homomorphism:

p: H — Sg; p:lv]—o

as we have defined above.

Special note here, S; can then be represented as permutation matrices of some
vector space as we have seen in representation theory. The composition of the two
homomorphisms gives us something more tractable to work with, for which we can
apply theory of characters etc.

Closing remarks: (Requires some background in Riemann Surfaces)
As hinted at in the quote starting this section, on (pg.87) Miranda goes on to

describe Monodromy representations as they apply to holomorphic maps between
Riemann surfaces. If we take out the branch points from the image of the map and
the whole fiber of each branch point from the domain (which includes ramification
points, then each point in the base space has the same amount of pre-images (i.e.
the degree of the map), so the holo becomes a covering space and we can apply
what we learned here.
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5: An Example

The following is Fzample 4.5 (pg.87 [/]), observing the unramified holomorphic
map given by the n'® power map.

c :‘X@—\/\,Y = Dy

Take the map g : X — Y of punctured discs as in the figure to be given by
y = g(x) = ™. Since this is a map from C to C, we can readily speak of it
being holomorphic. And it is, since it’s complex derivative is given by ¢ = na" 1.

We want to observe as well, that g is already in local normal form with respect
to the two charts for X and Y centered at zero’s, as g is its own global coordinate
representation. By Lemma 4.4 (p.45 [1]), since 3’ # 0 for all points in X (recall 0
was not included), this implies all points have multiplicity 1 (so we really have an
unramified map). Moreover, taking any nonzero point in the image and looking at
the sum of the multiplicities of points in the fiber, we deduce that deg(g) = n.

2wi/n h

Let q := zin be the base point in D;. If we let {,, := e be the primitive n'

root of unity, then:

g '(q) = {cg;/z ‘ 7 €{0,....,n —1}} = {z1,..., z, }.

The generator [v] for the fundamental group (Y, q) is given by the loop:
1 :
~(t) := ﬁezmt for t € [0,1].
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This loop lifts to the paths:

Fi(t) = (¢ /2)e=t for t € [0,1],

(7 € {0,...,n — 1}) whose starting and ending points are respectively at:

3;(1) = ¢t /2.

7;(0) = ¢ /2

and

Therefore the monodromy representation is generated by the n-cycle. That is:

p:m(Y,q) = S, via

[v] — (12 ... n).

(Again, [v] := 5™

[p( V] ﬂ Bota

1

0

0

0

0
0
0

1

1
0

0

0].

, t €10,1]). We can of course further represent this as a per-
mutation matrix on the space C", with respect to the standard basis:

So X, ([7v]) = 0 and the rest of the characters are produced by powers of the matrix

above. H
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Challenges:
1.) Find the character of the monodromy /permutation representation for the holo-

morphic map between complex tori:
F: X —X; x—2x

where X := C/L for some lattice L in the complex plane.
[Hint: This is an unramified map between (connected) Riemann surfaces.|

2.) Prove the bijective correspondence discussed in Section 3.3.[1] Then using
the definition of Galois connection given in the references [3] show this bijective
correspondence yields a Galois connection.

3.) Prove the Proposition at the end of Section 3.3.[1]
4.) Prove the existence of simply connected Universal Covers for “nice” spaces. [l]

5.) Find a monodromy /permutation representation for a “branched covering” given
by a ramified holomorphic map (that is, remove the appropriate points from the
domain and codomain and compute as we have before). Then see how the ram-
ification induces a new cycle structure in matrix form (see what happens to the
character of the representation). [Hint: See the discussion on pg.87-88 [4] together
with our example above. Then notice Lemma 4.6 (p.88 as well).]
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